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6. Additional Details of visual instruction
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Figure 5. Replacement of visual ground.

We focus on introducing visual instructions as they are
promising in aligning with visual degradations. However,
image degradations are “dangling,” meaning that their vi-
sual effects only manifest when they exist in the context
of degraded images. Therefore, we first apply degrada-
tions on some “standard images” to visually demonstrate
the degradations to the restoration model. We call this pro-
cess grounding of degradations, the “standard images” are
dubbed visual grounds.

The visual grounds should contain a wide range of pos-
sible visual constructs, patterns, structures, etc., that may
occur in natural images to reveal the full extent of degrada-
tion. At the same time, in order to minimize the preference
of the visual grounds for degradation and enhance its repre-
sentation, it should not be in some fixed form. The visual
grounds has been carefully designed and consists of regu-
lar textures, random textures, standard colors and natural
objects. Each part was obtained by random selection from
the pool, as shown in Fig. 7. We draw inspiration from im-
age quality assessment [77, 78, 114] and select TE42 [26],
a family of charts commonly used for camera testing and
visual analysis, to construct a pool of visual grounds. TE42
comprises a rich combination of textures and color palettes.

To better encode degradations themselves (rather than
image semantics), we first categorize them into regular and
stochastic textures, calibrated colors, and natural images,
to comprehensively encode diverse distortions. This is be-
cause different visual elements exhibit varying responses to
distortions (e.g., flat regions poorly represent blur). Each
category includes numerous base elements of the corre-
sponding category sampled from TE42. During training and
inference, we sample one element from each category and
combine them randomly to constrict a visual ground. Then,
according to the degradation we want, multiple degrada-
tions of varying intensities are randomly applied to the vi-
sual ground. For each degraded image that needs to be re-

Figure 6. Samples of visually degraded elements from the pool of
visual grounds.

covered, the visual ground is augmented with the same cat-
egory of degradation as a visual instruction, either individ-
ually or as a mixed degradation category. Some samples of
visual instructions are shown in Fig. 8. Finally, to better
encode degradations themselves (rather than image seman-
tics), we take the residual between the visual ground and its
degraded version to facilitate independence from the image
content.

In the ablation experiments, we replace visual ground
with blank ground and simple ground to verify the effec-
tiveness of the proposed visual ground. The replacement
Gound is shown in Fig. 5, where blank ground is a solid
color image of equal size to the visual ground, and simple
ground adds simple regular shapes. Visualizations of some
visually degraded elements from the pool of visual grounds
are shown in Section 6. Numerous distortion-sensitive el-
ements ensure targeted responses to specific degradations.
The compositional nature of visual instructions improves
generalization under compound and real-world distortions.
Quantitative results on direct testing are shown in Tables 3
and 4. Training on extensive synthetic distortions enables
generalization to real distortions.

7. More Details About Datasets

Our dataset in Sec. 4 consists of All-in-One datasets, mixed
distortion datasets, and natural mixture datasets.

All-in-One datasets contain images from a variety of dif-
ferent image recovery tasks. Our method and some of the
comparison methods are trained and tested uniformly on
these datasets. Details of these datasets are given below:

• Motion Deblur: collected from GoPro [81] dataset con-
taining 2103 and 1111 training and testing images, Real-
Blur [96] dataset containing 7516 and 1961 training and
testing images.

• Defocus Deblur: collected from DPDD [2] dataset con-
taining 350 and 76 training and testing images.

• Image Desnowing: collected from Snow100K [67]
dataset containing 50000 and 50000 training and test-
ing images, and RealSnow [149] dataset containing
61500(crops) and 240 training and testing images.
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Figure 7. Details of visual ground.
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Figure 8. Samples of visual instruct.

• Image Dehazing: collected from RESIDE [49] dataset
containing 12591 training images, and Dense-Haze [6]
dataset containing 49 and 6 training and testing images.

• Raindrop Removal: collected from RainDrop [87] dataset
containing 861 and 307 training and testing images, and
RainDS [90] dataset containing 150 and 98 training and
testing images.

• Image Deraining: collected from Rain1400 [30] dataset
containing 12600 and 1400 training and testing images,
Outdoor-Rain [54] dataset containing 8100 and 900 train-
ing and testing images, and LHP [33] (only use for test-
ing) dataset containing 300 testing images.

• Real Denoising: collected from SIDD [1] dataset contain-

ing 288 and 32 training and testing images.
• JPEG Artifact removal: training dataset collected from

DIV2K and FLICKR2K [3] containing 900 and 2650 im-
ages. Testing dataset collected from LIVE1 [104] con-
taining 29 testing images.
Mixed distortion datasets’ LQ image has three different

distortions: rain, snow, and noise. These distortions are
superimposed on the image of WED [75] dataset in all 6
orders. The reason rain, snow, and noise were chosen is
because they don’t conflict with each other (e.g. blur and
noise). The variance of the noise is 25 and the size and
speed of the rain line and snowflakes are randomized. Our
method and all comparison methods train 200 iterations on



Table 6. Comparison of perceptual metrics with state-of-the-art task-specific methods and all-in-one methods on 8 tasks. The best and
second-best performances are in red and bold font, with the top 2 with a light black background.

Motion Deblur
(GoPro [81])

Defocus Deblur
(DPDD [2])

Desnowing
(Snow100K-L [67])

Method FID↓ LPIPS↓ Method FID↓ LPIPS↓ Method FID↓ LPIPS↓
Task Specific
MPRNet[133] 10.98 0.091 DRBNet[99] 49.04 0.183 DesnowNet[67] - -

Restormer[134] 10.63 0.086 Restormer[134] 44.55 0.178 DDMSNet[138] 3.24 0.096

Stripformer[111] 9.03 0.079 NRKNet[92] 55.23 0.210 DRT[58] 8.15 0.135

DiffIR[125] 9.65 0.081 FocalNet[21] 48.82 0.210 WeatherDiff[83] 2.81 0.100

All in One
AirNet[50] 9.65 0.081 AirNet[50] 58.82 0.193 AirNet[50] 3.92 0.105

PromptIR[86] 15.31 0.122 PromptIR[86] 52.64 0.197 PromptIR[86] 3.79 0.100

DA-CLIP[71] 17.54 0.131 DA-CLIP[71] 57.43 0.201 DA-CLIP[71] 3.11 0.098

MPerceiver[4] 10.69 0.089 MPerceiver[4] 48.22 0.190 MPerceiver[4] 2.31 0.087
Defusion(Ours) 8.73 0.052 Defusion(Ours) 20.20 0.066 Defusion(Ours) 0.70 0.094

Raindrop Removal
(RainDrop [87])

Deraining
(Rain1400 [30])

Real Denoising
(SIDD [1])

Method FID↓ LPIPS↓ Method FID↓ LPIPS↓ Method FID↓ LPIPS↓
Task Specific

AttentGAN[87] 33.33 0.056 Uformer[120] 23.31 0.061 MPRNet[133] 49.54 0.200

Quanetal.[91] 30.56 0.065 Restormer[134] 20.33 0.050 Uformer[120] 47.18 0.198

IDT[126] 25.54 0.059 DRSformer[17] 20.06 0.050 Restormer[134] 47.28 0.195

UDR-S2[16] 27.17 0.064 UDR-S2[16] 19.89 0.053 ART[136] 42.38 0.189

All in One
AirNet[50] 33.34 0.073 AirNet[50] 22.38 0.058 AirNet[50] 51.20 0.134

PromptIR[86] 35.75 0.073 PromptIR[86] 22.59 0.058 PromptIR[86] 50.52 0.198

DA-CLIP[71] 29.38 0.078 DA-CLIP[71] 35.01 0.116 DA-CLIP[71] 34.56 0.186

MPerceiver[4] 19.37 0.044 MPerceiver[4] 17.82 0.049 MPerceiver[4] 41.11 0.191

Defusion(Ours) 10.91 0.039 Defusion(Ours) 12.93 0.057 Defusion(Ours) 32.77 0.139

this dataset for a fair comparison.

Considering the mix distortion described above as a syn-
thetic form, we added the underwater dataset as a natu-
ral mix distortion dataset and performed image restoration.
Underwater dataset collected from EUVP [39] dataset con-
taining 515 testing images, and TURBID [24] dataset con-
taining 60 testing images. Both our method and the compar-
ison method are trained on All-in-One datasets and tested
directly on the underwater dataset.

Sample visualizations for each task and dataset are
shown in Fig. 5 to better understand these datasets.

8. Implementation Details

For the visual instruct tokenizer, we follow the implementa-
tion of [27]1 and adapt its ImageNet-pretrained [100] VQ-
GAN model to our framework. The input size is 224× 224,
randomly cropped during training and center-cropped dur-
ing inference. The embedding size is 256, and the vocab-
ulary size is 1024. The encoder consists of five levels of
channel sizes [128, 128, 256, 256, 512], each level consists
of two residual blocks, and the last two layers addition-
ally have an attention block. Each level except the last one

1https://github.com/CompVis/taming-transformers

https://github.com/CompVis/taming-transformers
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Figure 9. Samples of Datasets.

downsamples the input size by a factor of two. The decoder
is symmetric to the encoder. The visual instruct tokenizer
is trained by the combination of vector quantization (VQ)
loss and a reconstruction loss described by Eqs. (2) to (4),
where λ = 1. Additionally, we adopt a hinge-based adver-
sarial loss [27, 97] with a weighting of 0.8. The discrimi-
nator follows the implementation of PatchGAN [40]2. The
visual instruct tokenizer is trained by the Adam optimizer
[48] with a learning rate of 4.5e-6, and β1 = 0.5, β2 = 0.9.
The batch size is 8. We adopt random horizontal flip as data
augmentation.

The base Diffusion model uses U-Net [22] as the back-
bone for its restoration process, with weights pre-trained on
the LAION-5B dataset [102]. Built upon it, we fine-tune
the Defusion on the All-in-One dataset with a batch size of
32 and with an initial learning rate of 1e-4 and decaying to
1e-6 via cosine annealing [69]. We use the AdamW opti-
mizer [68] with β1 = 0.9 and β2 = 0.99. In preprocessing,

2https://github.com/junyanz/pytorch-CycleGAN-
and-pix2pix/blob/master/models/networks.py

all inputs are normalized in the range [−1, 1] and randomly
cropped images to 256 × 256 for data augmentation. We
train the Defusion model on eight NVIDIA A100 GPUs for
a total of 600K iterations.

9. Addition Experimental Results

9.1. Comparison with SOTAs on Percetual Metrics

We also compare our method with previous SOTAs on per-
ceptual metrics, namely FID [35] and LPIPS [141], which
are usually more aligned with human visual preference than
reference-based metrics such as PSNR and SSIM [119].
The results are summarized in Table 6. Note that we use
the same Defusion model and hyperparameters as for Ta-
ble 1, while showing the best per-dataset results of the other
methods. Across all datasets, Defusion achieves compara-
ble or best perceptual qualities than both unified and task-
specific methods, usually with large margins. For example,
Defusion improves FID by over 100% on defocus deblur
and desnowing, while improving LPIPS by over 50% on

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py


motion deblur and defocus deblur. On other datasets, Defu-
sion also demonstrates advantages over previous methods.
It is even more impressive considering that Defusion is opti-
mized for reference-based metrics and generalized directly
to perceptual metrics. This clearly shows the promise of
diffusion-based methods with regard to human perceptual
priors. We believe developing more powerful diffusion-
based image restoration methods that are optimized for user
preferences is a valuable future research direction.

9.2. Visualization
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Figure 10. Visual results of real-world datasets.

Figures 10 to 12 provide more visualization results
on the all-in-one synthesized/real-world/mixed-degradation
datasets.
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Figure 11. Visual results of synthesized datasets.
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Figure 12. Visual results of mix distortion datasets.
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