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A. Implementation Details
A.1. Pre-trained Models
The 3D point cloud pre-training model [1–3, 6–10] is our

basic model. We apply our CSA strategy to three static point

cloud pre-trained models: Point-BERT [6], Point-MAE [3],

and PointGPT-S [1]. These models share the same back-

bone structure: the Transformer depth is 12, each block

contains a 6-head Self-Attention [5] layer and an MLP, and

the feature dimension is 384. The FeedForward Network

(FFN) following each self-attention layer is implemented

as an MLP, with dimensions of (384, 1536, 384).

A.2. Cross-frame Spatio-temporal Adaptation
Our Cross-frame Spatio-temporal Adaptation (CSA) strat-

egy tunes only the parameters of the Point Tube Adapter,

the Position Encoder, the Geometric Constraint Temporal

Adapter (GCTA), and the Head during downstream task

training. As mentioned in Sec 4, each anchor frame is se-

lected every two frames, and the number of anchor points

within it is 64. We set the temporal length of the point tube

to l = 3, the neighborhood space radius to rs = 0.3, and

randomly sample 32 points from the neighborhood space.

The detailed architecture of each module within our CSA is

shown in Table 1.

Module Block Input Size Output Size

Point Tube

Adapter

Grouping (24, 2048, 3) (12, 64, 32, 3)

Conv1d (12, 64, 32, 3) (12, 64, 32, 384)

Maxpooling (12, 64, 32, 384) (12, 64, 384)

Position Encoder Linear (12, 64, 3) (12, 64, 384)

GCTA

Grouping (12, 64, 384) (12, 64, k, 384)

Concatenation (12, 64, k, 384) (12, 64, k, 768)

Conv2d (12, 64, k, 384) (12, 64, k, 48)

Maxpooling (12, 64, k, 48) (12, 64, 48)

Conv1d (12, 64, 48) (12, 64, 384)

Head
Maxpooling (12, 64, 384) 384

Linear 384 Ncls

Table 1. Detailed architecture of our models. k is the number of

neighbors for Cross-frame KNN. Ncls is the number of classes.

B. Influence of Geometric Constraint Tempo-
ral Adapter Implementation

We construct the cross-frame KNN graph based on the spa-

tial distance between all point tubes and aggregate features

according to it in GCTA. The Table 2 shows the perfor-

mance comparison with the dynamic graph construction

method, which constructs a unique KNN graph in the fea-

ture space in each block. The results show that the neigh-

bors in Euclidean space are more helpful for the model to

capture long-term dynamics than those in semantic space.

Graph Accuracy(%)

Dynamic Feature KNN Graph 94.08

Cross-frame KNN Graph 95.12

Table 2. Comparison of graph construction methods on the MSR-

Action3D.

C. Effect of Geometric Constraint Temporal
Adapter

C.1. Feature Visualization
We qualitatively evaluate the effect of GCTA on the model’s

ability to encode point cloud sequences by visualizing the

learned features. We compare the model without GCTA

to the model with GCTA. We use t-SNE [4] to project the

learned features into a two-dimensional space. As shown in

Figure 1, the features are more compact and discriminative

with GCTA than without it.

(a) Model without GCTA. (b) Model with GCTA.

Figure 1. Feature visualization using t-SNE. Features belonging

to the same category are represented by the same color in the vi-

sualization.

C.2. Architecture Design
We further evaluate the impact of different adapter archi-

tecture. Specifically, we take the model with GCTA re-

moved as the baseline, and evaluate the performance of

three adapter types: the MLP adapter, the self-attention

adapter, and our proposed GCTA. As shown in Table 3,



while both the MLP and the self-attention adapters im-

prove upon the baseline, GCTA achieves the highest accu-

racy by effectively combining spatial and temporal informa-

tion. The results indicate that GCTA significantly enhances

model accuracy.

Adapter Accuracy(%)

- 87.11

MLP 89.55

Self-Attention 89.90

GCTA 95.12

Table 3. Comparison of different architecture of adapter in Trans-

former blocks.

C.3. Effect of GCTA in Different Blocks
We add GCTA to only part of the Transformer blocks to

evaluate the performance of the model. We conduct the

following experiments: (1) Only in odd-numbered blocks,

(2) Only in even-numbered blocks, (3) Only in the first 6

blocks, (4) Only in the last 6 blocks. For each strategy, we

conduct 5 experiments and take the average as the result.

The results are shown in Table 4.

Blocks Accuracy(%)

Odd 94.01

Even 93.87

First 6 92.89

Last 6 94.56

All 94.77

Table 4. Performance of GCTA in different Transformer blocks.

Adding GCTA only in odd-numbered or even-numbered

blocks leads to performance degradation. Applying GCTA

only to the first six blocks results in the lowest accuracy of

92.89%, while to the last six blocks yield an accuracy of

94.56%. This finding indicates that early blocks may not

be as effective at modeling complex spatiotemporal rela-

tionships as later blocks. The highest accuracy of 94.77% is

achieved when GCTA is applied to all blocks. This indicates

that utilizing GCTA throughout the entire model maximizes

its effectiveness, allowing for comprehensive integration of

spatial and temporal features.

D. Visualization
We visualize a few attention distribution examples in Fig-

ure 2. The results show that more attention is distributed

to the moving parts in some frames, which shows that our

strategy can accurately identify motion information and lo-

cate frames with more intense motion.

Figure 2. Visualization of self-attention distribution for 12 anchor

frames in each video. Warmer color indicates more attention.
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