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A. Theoretical Analysis
Lemma 1 (Cycle-consistency, Universe Matching). Given
a set of pairwise (partial) matching matrices {Xij}mi,j=1, it
is cycle-consistent iff there exists a collection of universe
matching matrices {Ui ∈ Uni,d}mi=1 such that for each
graph pair (Gi,Gj), we have

Xij = UiU
T
j .

Proof. We need to prove that the matching matrices {Xij}mi,j=1

satisfy cycle-consistency, which means that:

XijXjk = Xik.∀i, j, k ∈ [m] (1)

By the assumption of the lemma 1, there exists a collec-
tion of universe matching matrices {Ui}mi=1 such that for
each pair (Gi,Gj),

Xij = UiU
T
j . (2)

Therefore, we have

Xij = UiU
T
j , Xjk = UjU

T
k , Xik = UiU

T
k . (3)

Now we compute XijXjk:

XijXjk = (UiU
T
j )(UjU

T
k )

= Ui(U
T
j Uj)U

T
k . (4)

Assume that each matrix Ui satisfies UT
i Ui = I (i.e., Ui

is an orthogonal matrix or has unit inner product property).
Thus, Eq. (4) simplifies further to:

XijXjk = UiIU
T
k = UiU

T
k = Xik. (5)

This shows that the matching matrices {Xij}mi,j=1 sat-
isfy cycle-consistency.

B. Algorithm Pipeline
Algorithms 1 and 3 outline the procedures for the source
training phase and the test-time adaptation phase, respec-
tively, while Algorithm 2 provides a detailed explanation of
the HiPPI [1] method used in Algorithm 1.

C. Additional Experiments
C1. Single Source DG in Retinal Fundus

For the retinal fundus segmentation task, we conducted single-
source domain generalization experiments. Unlike the ex-
periments described in the main text, this setup simulates a

more realistic scenario where test data may originate from
arbitrarily complex real-world distributions, i.e., mixed dis-
tribution shifts. Specifically, data from one site was selected
and split 8 : 2 into training and validation sets (S = 1),
while the remaining sites (T = |Ds ∪ Dt| − 1) were shuf-
fled and used entirely as the testing dataset. Notably, all
models encountered these target domains for the first time
during testing.

As shown in Table 1, our approach achieved SOTA per-
formance across all five transfer experiments for the DSC
metric. In the average results, we outperformed the second-
best method (DeY-Net [17]) by 4.85%, 1.78%, and 1.81%
in the DSC, Emax

ϕ , and Sα, respectively. These results vali-
date the effectiveness of our method for medical image seg-
mentation tasks.

The retinal fundus dataset is characterized by significant
low-level visual differences and features segmentation tar-
gets that are not singular, often exhibiting overlapping and
fixed structures. We attribute our superior performance to
the comprehensive learning of the morphological knowl-
edge of organs. This enables our method to robustly distin-
guish organ instances and their shape features—a domain-
invariant property—even under severe domain shifts that
degrade the performance of other methods.

C2. Multi Source DG in MRI Prostate

Datasets. We conducted experiments on the prostate seg-
mentation task using T2-weighted MRI scans collected from
six different clinical centers, denoted as Domain RUNMC,
BMC, I2CVB, UCL, BIDMC, and HK. These centers are
sourced from three publicly available datasets: NCI-ISBI13 [11],
I2CVB [7], and PROMISE12 [9].
Implementation Details. We followed the data preprocess-
ing pipeline of [19] to ensure consistency. Specifically, we
used 30 labeled cases from RUNMC as the source dataset
and evaluated the model on 30, 19, 13, 12, and 12 unlabeled
cases from the five remaining clinical sites. Each MRI ax-
ial slice was resized to 384 × 384 pixels and normalized to
have zero mean and unit variance. Before normalization,
we clipped the 5%–95% intensity range of the histograms
to reduce outlier influence.

For feature extraction, we employed a ResNet-50 back-
bone pre-trained on ImageNet. During both the source model
training and test-time adaptation (TTA) stages, we main-
tained a batch size of 8. Given that edge precision is crucial
in MRI prostate segmentation, and considering the com-
plex shape variations of the prostate, we selected Dice Score



Table 1. Single source domain generalization in the retinal fundus segmentation. The performance (mean ± standard deviation) of three
trials for our method and eight SOTA methods. “A → {B,C,D,E}” represents models trained on Site A and tested on the mixed
distribution of Sites B-E, and similar for others. Best results are colored as red.

Methods A→ {B,C,D,E} B→ {A,C,D,E} C→ {A,B,D,E} D→ {A,B,C,E} E→ {A,B,C,D} Average
DSC Emax

ϕ Sα DSC Emax
ϕ Sα DSC Emax

ϕ Sα DSC Emax
ϕ Sα DSC Emax

ϕ Sα DSC ↑ Emax
ϕ ↑ Sα ↑

No Adapt (U-Net [14]) 70.60±10.01 86.92±1.17 80.36±0.88 77.08±6.90 91.58±0.84 85.44±0.99 66.24±8.45 86.49±0.77 80.01±0.91 71.21±9.47 82.90±1.48 80.11±0.88 72.26±7.60 86.51±1.02 86.05±0.68 71.47 86.88 82.39
TASD (AAAI’22) [10] 79.89±5.91 93.26±0.21 87.12±0.13 82.63±3.24 93.20±0.25 86.00±0.10 78.03±4.29 92.47±0.14 86.71±0.09 76.30±7.81 86.09±0.15 80.94±0.11 79.99±1.29 93.24±0.10 87.08±0.08 79.36 91.65 85.57
DLTTA (TMI’22) [18] 74.96±7.20 89.24±0.25 84.02±0.11 78.27±5.66 92.40±0.40 85.36±0.11 75.84±5.14 90.96±0.20 84.11±0.10 65.55±9.35 84.80±0.18 78.33±0.08 71.68±4.99 87.79±0.17 85.13±0.09 73.26 89.03 83.39
SAR (ICLR’23) [12] 74.20±6.09 89.07±0.33 83.64±0.10 80.34±2.86 92.70±0.41 85.95±0.12 72.58±4.46 91.20±0.20 83.47±0.09 70.30±8.98 85.10±1.09 79.42±0.72 70.31±5.77 88.56±0.81 86.79±0.30 73.54 89.32 83.85

DomainAdaptor (CVPR’23) [20] 77.23±3.97 90.22±0.40 84.20±0.11 76.41±4.28 91.80±0.31 85.73±0.12 70.17±8.01 91.32±0.24 83.50±0.09 67.39±9.82 84.16±0.21 78.02±0.08 76.97±4.59 89.30±0.13 85.46±0.08 73.63 89.36 83.38
DeY-Net (WACV’24) [17] 80.03±8.31 94.42±0.20 86.35±0.84 84.30±7.09 94.25±0.23 87.16±0.47 80.32±7.85 93.40±0.32 88.41±0.33 78.67±5.31 86.12±0.78 80.45±0.30 76.81±3.79 90.09±0.55 86.30±0.25 80.02 91.65 85.73

VPTTA (CVPR’24) [3] 73.57±6.60 92.68±0.03 84.14±0.01 78.21±2.40 94.07±0.09 86.16±0.01 69.26±4.29 92.78±0.08 82.66±0.02 60.11±8.05 85.18±0.10 76.24±0.03 72.58±5.21 91.16±0.13 84.74±0.04 70.74 91.17 82.78
NC-TTT (CVPR’24) [13] 78.21±2.74 93.87±0.25 85.49±0.11 82.13±3.30 93.19±0.29 86.78±0.08 77.50±5.29 91.99±0.14 84.08±0.03 74.14±3.50 87.53±0.25 80.56±0.11 80.53±1.08 92.73±0.10 85.81±0.07 78.50 91.86 84.54

Ours 85.25±2.33 94.68±0.09 88.52±0.13 85.34±3.08 93.18±0.20 86.83±0.11 86.19±1.99 94.57±0.20 89.24±0.13 81.52±4.25 91.20±0.30 84.53±0.28 86.08±3.08 94.60±0.23 88.58±0.11 84.87 93.64 87.54

(DSC) and Hausdorff Distance (HD95) as the primary eval-
uation metrics to provide a comprehensive performance as-
sessment.
Experimental Results. The MRI prostate segmentation
results are presented in Table 2, where we compare our
method against several SOTA approaches, including the lat-
est TTA segmentation method, PASS [19]. As shown in
the results, the performance of existing TTA methods re-
mains relatively close across both DSC and HD95 metrics.
While PASS exhibits strong segmentation performance, our
method surpasses it with a 1.69% improvement in DSC,
demonstrating its effectiveness. Given the inherent chal-
lenges of MRI prostate segmentation, characterized by di-
verse imaging modalities and complex morphological vari-
ations, our results highlight the robust generalization capa-
bility of our approach. Nonetheless, further enhancing edge
precision remains an important focus for our future work.

C3. Natural Image Classification

Datasets. For natural image classification tasks, we se-
lected two benchmark datasets: PACS [8] and VLCS [4],
which are widely used in domain generalization and test-
time adaptation studies. The PACS [8] dataset consists of
large images spanning 7 classes evenly distributed across
4 domains, i.e. A (Art), C (Cartoons), P (Photos), and S
(Sketches), with a total of 9,991 images. The VLCS [4]
dataset comprises 10,729 images across 5 classes (bird, car,
chair, dog, and person), evenly distributed across 4 domains:
C (Caltech101), L (LabelMe), S (SUN09), and V (VOC2007).
Source model training. For all experiments, we employed
an ImageNet-pretrained ResNet-50 [6] as the feature ex-
tractor, with an MLP layer provided by the DomainBed [5]
benchmark serving as the classifier. We used the SGD opti-
mizer with a learning rate of 1× 10−5. The batch size was
set to 32, and training was conducted for 10,000 iterations.
All images were resized to 224 × 224, and data augmenta-
tion techniques—including random cropping, flipping, color
jittering, and intensity adjustments—were applied during
source training.
Implementation details of test-time adaptation setup. We
evaluated our framework against six methods (i.e. Empiri-
cal Risk Minimization (ERM) [15], DomainAdaptor [20],
ITTA [2], VPTTA [3], NC-TTT [13]) under fair compar-

ison conditions, following the leave-one-out training strat-
egy using the publicly available DomainBed [5] framework.
For deploying our framework at the test-time phase, we em-
ployed SGD with a learning rate of 0.005, a batch size of
16, and a universe size of d = 60. Notably, as all images
in the natural image classification task contain only a single
instance class, the class-wise similarity matrix described in
Section 3.2 of the main text was not utilized.
Experimental Results. The classification results across
different domains for natural images are presented in Ta-
bles 3 and 4. While the ERM method shows strong perfor-
mance compared to existing approaches, our method achieves
higher classification accuracy, surpassing ERM by 3.01%
on the PACS dataset and 2.49% on the VLCS dataset. Ad-
ditionally, our approach demonstrates competitive perfor-
mance against state-of-the-art test-time adaptation methods
designed for natural images. Natural images present greater
challenges compared to medical images due to the lack of
consistent morphological priors typically observed in the
latter. However, unlike segmentation tasks, classification
does not require determining the specific class of every pixel
in an image. Our framework’s graph construction effec-
tively captures spatial correspondences for each instance,
further enhancing its performance.

C4. Additional Visualization

We conducted additional visualization experiments, with seg-
mentation results for retinal fundus and polyp images shown
in Figures 1 and 2, respectively. Each row represents images
from a distinct domain (Site), and we ensured that the model
performing inference had not encountered images from that
domain before.

Retinal fundus segmentation, in particular, presents a chal-
lenge due to the presence of two overlapping substructures.
Lower clarity and contrast in images (e.g., rows 1 and 2
of Figure 1) further complicate the model’s ability to accu-
rately differentiate and segment these structures. By incor-
porating morphological priors of the organ within a multi-
graph matching network, our method effectively learns ro-
bust substructure representations while minimizing domain-
related noise. This approach overcomes issues like repeated,
missing, or blurred edge pixels commonly seen in other
methods, providing a more precise segmentation outcome.



Table 2. Test-time domain generalization results on the MRI prostate datasets. The performance (mean ± standard deviation) of three trials
for our method and six SOTA methods. Best results are colored as red.

Methods BMC I2CVB UCL BIDMC HK Avg.
DSC HD95 DSC HD95 DSC HD95 DSC HD95 DSC HD95 DSC ↑ HD95 ↓

No Adapt 74.30±5.31 16.08±12.41 66.47±13.50 37.16±18.24 75.28±6.20 16.77±12.10 52.08±7.71 50.09±20.85 80.51±9.35 8.79±9.06 69.72±8.29 25.77±15.41
TENT (ICLR’21) [16] 77.45±3.79 12.09±9.88 69.10±10.47 30.78±19.22 79.69±4.81 14.71±11.01 52.01±6.80 42.63±10.13 84.58±2.73 4.07±5.38 72.56±4.26 20.85±13.64
TASD (AAAI’22) [10] 76.28±2.35 15.11±15.17 68.30±7.88 31.43±24.10 80.25±3.54 10.59±16.39 56.08±3.82 51.90±24.82 81.09±1.79 4.26±4.16 72.40±5.72 22.65±17.53
SAR (ICLR’23) [12] 77.24±4.26 20.48±10.12 68.99±8.27 49.07±15.66 79.27±8.48 18.03±5.89 50.81±10.60 54.35±19.31 85.40±3.08 3.87±3.55 72.34±4.80 29.16±16.28

DomainAdaptor (CVPR’23) [20] 76.49±2.59 19.27±8.13 69.07±9.14 32.57±10.40 80.41±5.08 16.24±9.88 49.99±14.28 48.40±10.28 85.20±1.90 3.25±6.94 72.23±6.82 23.94±14.55
VPTTA (CVPR’24) [3] 77.42±4.38 12.93±7.09 70.25±5.18 30.01±13.68 82.07±6.27 13.28±18.09 57.49±8.46 40.11±12.05 83.27±2.96 3.40±5.45 74.10±4.79 19.94±12.99

PASS (TMI’24) [19] 80.07±7.14 10.50±9.57 71.41±6.28 28.26±9.97 84.39±8.81 10.68±12.27 57.27±11.48 36.94±16.43 84.88±3.71 3.03±5.05 75.60±5.13 17.88±12.14
Ours 79.63±4.71 9.99±11.10 74.09±9.80 25.70±13.07 86.30±7.25 11.08±17.47 60.33±13.59 39.52±14.20 86.12±2.08 2.84±8.08 77.29±3.98 17.82±11.06

Ground TruthNo Adapt VPTTA NC-TTT OursTesting Images DeY-Net

Figure 1. Visualization comparison of segmentation results for the No Adapt baseline, DeY-Net [17], VPTTA [3], NC-TTT [13], and our
method in retinal fundus segmentation. The five rows from top to bottom display the final segmentation results for tests conducted on Sites
A to E. Different colors represent the segmentation instances of different classes identified by the network.

The segmentation of polyps presents a greater challenge
than that of retinal fundus imaging due to the highly vari-
able appearance, with marked differences in shape, size,
and color across domains. This variability demands precise,
pixel-level classification from the network. Furthermore,
we have not designated polyp segmentation as a single-object
task; the model independently classifies and segments mul-
tiple classes during testing, using different colors to distin-

guish each segmented object in the visualization. As il-
lustrated in Figure 2, the masks generated by our method
are in close alignment with expert annotations and effec-
tively avoid pixel misclassification into different categories,
a common issue in other methods.



Ground TruthNo Adapt VPTTA NC-TTT OursTesting Images DeY-Net

Figure 2. Visualization comparison of segmentation results for the No Adapt baseline, DeY-Net [17], VPTTA [3], NC-TTT [13], and our
method in polyp segmentation. The four rows from top to bottom display the final segmentation results for tests conducted on Sites A to
D. Different colors represent the segmentation instances of different classes identified by the network.

Table 3. Test-time domain generalization results on the PACS [8]
dataset using a ResNet-50 backbone. Each column (A, C, P, S)
indicates the domain used as the test set, while the remaining do-
mains are used for training. The best results are highlighted in red.

Method A C P S Avg.
ERM [15] 84.07 80.21 97.06 81.99 85.83

TENT (ICLR’21) [16] 82.34 78.63 97.93 82.72 85.40
DomainAdaptor (CVPR’23) [20] 86.15 82.02 98.40 84.38 88.45

ITTA (CVPR’23) [2] 85.63 84.30 97.27 84.09 87.82
VPTTA (CVPR’24) [3] 86.50 83.77 97.09 85.10 88.12

NC-TTT (CVPR’24) [13] 83.81 80.44 96.53 82.36 85.79
Ours 85.08 83.93 98.61 87.76 88.84

Table 4. Test-time domain generalization results on the VLCS [4]
dataset using a ResNet-50 backbone. Each column (C, L, S, V)
indicates the domain used as the test set, while the remaining do-
mains are used for training. The best results are highlighted in red.

Method C L S V Avg.
ERM [15] 97.63 64.20 70.39 74.41 76.66

TENT (ICLR’21) [16] 96.88 64.46 71.07 73.52 76.48
DomainAdaptor (CVPR’23) [20] 98.69 69.18 73.66 76.01 79.39

ITTA (CVPR’23) [2] 97.30 66.09 72.31 75.10 77.70
VPTTA (CVPR’24) [3] 97.25 67.69 71.78 75.22 77.98

NC-TTT (CVPR’24) [13] 96.72 65.58 73.04 76.83 78.04
Ours 98.49 68.72 74.12 75.30 79.15

D. Additional Analysis
D1. Effectiveness of the class-wise similarity matrix

The class-wise similarity matrix W is introduced to miti-
gate category confusion in graphs caused by nodes belong-
ing to different classes. Such confusion often results in mis-
matches, semantic deviations, and redundant computations.
By reordering the adjacency matrix based on the labels Yi of
each node Vi, our method strengthens the capacity to iden-
tify and learn class-specific information during the source
training phase. To validate the above perspective, we con-
ducted experiments comparing the final TTA segmentation
results with and without W (denoted as with W and w/o
W). As illustrated in Figure 4, w/o W results in a mea-
surable decline in DSC performance. Furthermore, we vi-
sualized the effect of w/o W in multi-object segmentation
scenarios, as shown in Figure 5. While the masks generated
by the model closely align with the ground truth, the model
misclassified the categories of two segmented instances.

D2. Effectiveness of Morphological Priors

We visualized cross-site pairing without morphological pri-
ors, as shown in Fig. 3(a), and compared it with the results
obtained after incorporating priors, as shown in Fig. 3(b).
Without priors, the graph nodes were not correctly sampled
within the corresponding organs, leading to mismatches. By



(a) Visualization of graph matching without morphological priors

(b) Visualization of graph matching with morphological priors

Figure 3. Visualization of graph pair matching.

Figure 4. Ablation study on the impact of the Class-wise Simi-
larity Matrix W in retinal fundus segmentation: comparison of
results with and without (w/o) W.

introducing priors, this issue was effectively resolved, and
multigraph matching ensured more stable pairing across mul-
tiple domains. For a quantitative evaluation of the impact of
without priors, please refer to Table 4 in the main text.

D3. Impact of Batch Size on Segmentation

As shown in Table 5, increasing the number of simultane-
ously matched graphs leads to a significant increase in both
FLOPs and inference time, while the improvement in seg-
mentation quality remains marginal. To achieve a balance
between segmentation performance and computational effi-
ciency, we set the mini-batch size to 4 during the TTA phase
in retinal fundus datasets. However, this is a tunable hyper-

w/oW with W GT

Figure 5. Visualization of segmentation results with and without
(w/o) the Class-wise Similarity Matrix W.

Table 5. Ablation study on batch size during TTA for retinal fun-
dus segmentation. “Avg. DSC” represents the average DSC across
the five sites, while “time” indicates the inference time per image.

Batch Size Avg. DSC FLOPs (G) time (s/img)
2 85.20 3.012 0.277
4 88.46 4.255 0.392
8 88.93 20.43 0.780

16 89.15 80.96 1.831
32 88.31 223.1 3.715

parameter rather than a fixed value, as it depends on factors
such as the size of the segmented objects and the input im-
age resolution. Empirically, we find that a mini-batch size
between 4 and 8 provides an optimal trade-off.

E. Limitations
Unlike mainstream TTA methods that update only the Batch
Normalization layers, our approach optimizes all network
parameters during test time, achieving superior segmenta-
tion performance. However, the increased computational
overhead limits deployment on portable devices, making ef-
ficiency optimization a key focus for future work.

In our experiments, we also observed that when both
large and small organs are present, the model tends to per-
form better on larger organs while often overlooking smaller
ones. This is due to the uniform sampling of foreground
nodes, which can lead to diminished segmentation accuracy
for small targets. To address this, we plan to incorporate
stronger regularization in future work to better guide the
sampling and learning of small structures.

Our method is well-suited for medical imaging compared
to natural image tasks. In natural images, objects often ex-
hibit significant variation due to intrinsic properties, motion,
and state changes. In contrast, organs in medical images
remain relatively stable, which aligns well with the prior
knowledge.



Algorithm 1 Source Training Phase per Mini-Batch
Output: Loverall: The overall loss for training the segmentation network;
U : the pre-trained universe embeddings integrate morphological priors;

Input: {xi ∈ RH×W×C}mi=1: A batch of m images from one or multiple domains;
{yi ∈ [0, 255] ∩ Z}mi=1: The ground truth masks corresponding to the input images;
E(·): Feature extractor (ResNet-50);
S(·): Segmentation head;
N : The total classes number of segmentation organ;
U : Learnable universe embeddings;
(1) Segmentation Network Training.

1: Get the visual feature maps: fi ← E(xi).
2: Get the predict segmentation masks: ŷi ← S(fi).
3: Get the supervised loss: Lsup ← CE(ŷi, yi), where CE is Cross Entropy Loss.

(2) Graph Construction.
4: for each i ∈ [1,m] do
5: for each object n ∈ [1, N ] do
6: {fn

i,k}Kk=1 ← Extract feature maps for object n from layers 1 to K based on fi and yi.
7: end for
8: Obtain object-specific features: {Fn

i }Nn=1 ← Concat(fn
i,1, . . . , f

n
i,K) for each n in N .

9: Build features of nodes and corresponding labels: {Vi ∈ Rni×h, Yi ∈ Zni}mi=1 ← ϕ({Fn
i }Nn=1), where ϕ is the

spatially-uniform sampling, and ni is the total number of nodes for xi.
10: Gi = (Vi,Ai), the weighted adjacency matrix Ai is obtained from Eq. (5).
11: end for

(3) Formulation of universe embeddings.
12: if U is not initialized then
13: U = 1/d+ 10−3z, where z ∼ N(0, 1).
14: end if
15: Universe matching matrices: U = [UT

1 , · · · , UT
m]T, where Ui = Sinkhorn(Vi UT, τ) ∈ Unid, d is the universe size.

16: Block-diagonal multi-adjacency matrix: A = diag(A1, · · · ,Am).
17: Compute the class-aware similarity matrix: Ã = WTAW, where W = [Wij ]ij , and Wij = YiY

T
j .

18: HiPPI solving for stable convergence of U as in Eqs. (6-8).
19: Update U with L(U) in Eq. (9).

Overall Loss of Source Training.
20: Loverall = Lsup + L(U).

Algorithm 2 Higher-order Projected Power Iteration (HiPPI) [1]
Output: Cycle-consistent universe-matching Ut.
Input: W : multi-graph similarity matrix;

U0: initial universe-matching U0 ∈ Unid;
1: Initialise: t← 0, proj← Sinkhorn.
2: repeat
3: Vt ←WUtU

T
t WUt.

4: Ut+1 ← proj(Vt).
5: t← t+ 1.
6: until ||U t

i − U t−1
i || < 10−5
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Algorithm 3 Test-time Adaptation Phase per Mini-Batch
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