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1. Datasets
Animal Pose dataset. The Animal Pose dataset [3] includes
five categories: dog, cat, cow, horse and sheep, comprising a
total of over 6,000 instances across more than 4,000 images.
Each animal instance in Animal Pose dataset is annotated
with 20 keypoints.
APT-36k dataset. The APT-36k dataset [10] contains 36000
images covering 30 different animal species from different
scenes. There are typically 17 keypoints labeled for each
animal instance.
AwA Pose dataset. The AwA Pose dataset [1] is introduced
for 2D quadruped animal pose estimation. AwA contains
10064 images of 35 quadruped animal species and each
image is annotated with 39 keypoints.
Stanford Extra dataset. The Stanford Extra dataset [2]
consists of 20,580 images and covers 120 dog breeds. Each
image is annotated with 20 2D keypoints and silhouette.
Zebra synthetic dataset. The Zebra synthetic dataset [12]
consists of 12850 images. Each image is randomly gener-
ated that differs in background, shape, pose, camera, and
appearance.
Animal Kingdom dataset. The Animal Kingdom dataset
[7] includes a diverse range of animal species. We only use
8 major animal classes of pose estimation dataset to evaluate
our method.
Animal3D dataset. Animal3D dataset [9] contains a total of
3379 images, which are classified into 40 classes. Each im-
age is annotated with SMAL [11] parameters, 2d keypoints,
3d keypoints and masks.
CtrlAni3D dataset. Our dataset is annotated in the same
style as Animal3D dataset. More details about our dataset
can be found in Sec. 2.

For all datasets, we filter out images of animals not in-
cluded in SMAL [11], such as elephants. We then aggregate
all the aforementioned datasets (excluding Animal Kingdom)

* Equal contribution.
† Corresponding author.

for training, assigning different sampling weights to each
dataset based on its type and size, as shown in Tab. S1.

Table S1. Full dataset statistics for training.

Dataset Number Ratio Training Sample Weight
Animal3D 3065 7.4% 1
CtrlAni3D 8277 20.0% 0.5
Animal Pose 1680 4.0% 0.15
AwA-Pose 2884 7.0% 0.15
Zebra Synthetic 12850 31.1% 0.05
Stanford Extra 7689 18.6% 0.15
APT-36K 4887 11.8% 0.15
Total 41332 100% -

2. More Details about CtrlAni3D

Each image in the CtrlAni3D dataset is annotated with
SMAL parameters, including β ∈ R41, θ ∈ R35×3 (ex-
pressed by axis angle), and γ ∈ R3. Additionally, similar to
Animal3D [9], CtrlAni3D provides annotations for 26 3D
keypoints and their corresponding 2D keypoints. The visibil-
ity of 2D keypoints is determined by comparing the depth dk
of the keypoint with the depth dp at the corresponding pixel
location. Specifically, visibility is set to 1 when dk ≤ dp;
otherwise, it is set to 0.

During the generation of CtrlAni3D dataset, we prompt
the ControlNet using common names instead of scientific
names of animals. However, to better indicate the position
our CtrlAni3D dataset in the animal taxonomy, we list the
most relevant scientific names of used animal species in
Tab. S2. During the image generation process, we require hu-
man annotators to filter out misaligned results, as described
in main text Sec.4. Such misaligned results, denoted as
“Failure cases”, are illustrated in Fig. S1.

In addition, COCO backgrounds are used only when
SAM2 achieves satisfactory segmentation quality. Therefore,
increasing the ratio of COCO backgrounds is equivalent to
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Figure S1. CtrlAni3D failure cases and successful cases. (a) Failure cases. There are two main cases of failure: (1) At times, ControlNet
may struggle to generate mesh-aligned poses (first row and second row). (2) Additionally, ControlNet may not effectively generate the
intricate details of the animal body (third row and fourth row). (b) Successful cases. The backgrounds of the first and second rows are
generated by ControlNet, while the backgrounds of the third and fourth rows are sourced from the COCO dataset.

lowering the IoU threshold, which results in a decline in data
quality. This may negatively impacts model training.

Table S2. Scientific names of used animal species in CtrlAni3D.
The image counts of each species are listed at the right column.

Family Species Prompt Commands Count

Felidae

Felis catus Cat 80
Panthera leo Lion 630
Acinonyx jubatus Cheetah 299
Panthera tigris Tiger 280

Canidae
Canis lupus familiaris Dog 2976
Canis lupus Wolf 413

Equidae
Equus ferus caballus Horse 2228
Equus zebra Zebra 1460

Bovidae Bos taurus Cow 890
Hippopotamidae Hippopotamus amphibius Hippo 455
Total 9711

3. Comparison between CtrlAni3D and Ani-
mal3D

CtrlAni3D and Animal3D are both based on SMAL. As
a result, both datasets encompass five animal families, as
presented in Tab. S2. Animal3D includes more subcategories
(e.g., bighorn) compared to CtrlAni3D, which has a greater

number of entries. However, there are some animal species
that SMAL doesn’t express very well (in the second row
of Fig. S2). In addition, Animal3D requires manual 2D
annotations for fitting, which introduces a degree of error,
as shown in the first row of Fig. S2. CtrlAni3D ensures
the quality of data through cycle consistency and manual
filtering.

Figure S2. Some bad cases in Animal3D.

4. More results and analysis.
Effect of CtrlAni3D for 3D pose estimation. To demon-
strate the improvements of CtrlAni3D for 3D pose estima-



tion, we report the results of the 3D metrics on Animal3D,
as shown in Tab. S3. We can observe that training with
CtrlAni3D enhances performance on Animal3D.

Table S3. Effect of including CtrlAni3D in training. We evaluate
the performance of 3D pose estimation on two models. For the
first model, we do not use CtrlAni3D during training, while for the
second model, we incorporate CtrlAni3D into the training process.

PA-MPJPE ↓ PA-MPVPE ↓
AniMer(no CtrlAni3D) 82.6 88.4

AniMer(with CtrlAni3D) 80.4 85.7

Domain gap between CtrlAni3D and real-world data. Al-
though CtrlAni3D can improve the model performance on
the real-world data, there still exist a certain domain gap.
Tab. S4 shows a certain domain gap between Animal3D
and CtrlAni3D. However, the comparable results between
AniMer(A3D) and AniMer(C3D) on the Animal Kingdom
dataset indicate a similar generalization ability on in-the-
wild data between Animal3D and CtrlAni3D. This is why
we aggregate many datasets for full training. The perfor-
mance gain shown in Tab.2 (in main text) further validates
the effectiveness of CtrlAni3D to assist in generalization.

Table S4. The generalizability of CtrlAni3D. AniMer(A3D) trains
only on Animal3D, AniMer(C3D) trains only on CtrlAni3D.

Method Animal3D CtrlAni3D Animal Kingdom
PCK@HTH ↑ AUC ↑ PCK@HTH ↑ AUC ↑ PCK@HTH ↑ AUC ↑

AniMer(A3D) 87.0 86.0 89.7 89.9 78.0 78.6
AniMer(C3D) 83.8 81.9 93.5 95.0 77.8 80.3

Ablations on different encoder and decoder. To empha-
size the significance of the ViT encoder and the SMAL
transformer decoder, we substitute the ViT encoder with a
ResNet-152 encoder and the SMAL transformer decoder
with an MLP decoder, respectively. The results are presented
in Tab. S5.

Table S5. Ablations on different encoder and decoder. AniMer-b:
use ResNet-152 as encoder. AniMer-e: use MLP as decoder.

Method Animal3D CtrlAni3D Animal Kingdom
PA-J ↓ PA-V ↓ PA-J ↓ PA-V ↓ AUC ↑ PCK@0.1 ↑

AniMer-b 115.5 128.7 117.0 129.4 68.9 10.2
AniMer-e 83.9 89.2 55.8 60.9 81.9 31.6
AniMer 80.4 85.7 44.1 47.6 82.9 34.9

More discussion about contrastive learning. The con-
trastive loss directly impacts the feature tokens F, which
in turn indirectly impacts the feature vectors f and aligns
features to model the global structure, capturing family dif-
ferences. This ensures that the final output shape aligns more
closely with the category of the input image. Compared with
contrastive learning, Lcls (“w Lcls” in Tab. S6) focuses solely
on optimizing classification accuracy, which may not neces-
sarily improve geometric parameter regression. Moreover,

Table S6. Evaluation of some species in A3D. PA-J: PA-MPJPE,
PA-V: PA-MPVPE.

species w Lcls w/o Lcon w Lcon
PA-J PA-V PA-J PA-V PA-J PA-V

dog 74.9 81.3 72.1 76.7 71.1 75.1
zebra 66.3 68.3 60.4 63.7 60.6 62.7
horse 78.5 86.6 77.4 86.5 75.9 84.1
cat 129.4 132.0 134.5 136.1 131.2 132.8
cow 83.0 86.0 80.3 84.8 78.1 83.2

sheep 83.9 88.0 83.8 91.1 80.1 88.5
bear 79.4 80.0 76.5 80.5 76.8 79.3
boar 126.5 158.7 119.1 150.5 115.9 142.6

contrastive learning facilitates a more compact intra-class
distribution and a more separable inter-class distribution in
the feature space [6], thereby enhancing the model’s capabil-
ity for few-shot learning. In Tab. S6, we report the results for
various animals. Lcon can improves performance for animals
with limited training samples (e.g., boars are less than one
percent of the training set).
Ablation study on two stage training. We compare to
“AniMer-c”, which trains the AniMer model for one stage.
Both models are trained using the same batchsize and train-
ing steps. The two-stage training makes the model training
more stable. By increasing the training steps or tuning the
other hyperparameters, one-stage training may achieve com-
parable results. Quantitative results are shown in Tab. S7,
and qualitative results are shown in Fig. S3.
The effect of different setting. Similar to the findings of
[4], our model exhibits varying performance metrics (PA-
MPJPE(↓) on Animal3D: 87−78, PCK@0.15(↑) on Animal
Kingdom: 0.5− 0.6) under different settings (e.g., varying
hyperparameters, different devices).

5. More Qualitative Results
We provide qualitative results from the Animal Kingdom
dataset in Fig. S4. For each case, we display the input
image and the output results, which include both a front
view rendering and a side view rendering. It can be observed
that AniMer performs well even in challenging conditions
such as motion blur (the second sample in the first row),
unusual lighting (the first sample in the third row), partial
occlusion (the first sample in the fourth row), and truncation
(the second sample in the fifth row).

6. Failure Cases and Discussion
We provide failure cases in Fig. S5. Although AniMer
demonstrates strong robustness, it can fail in certain scenar-
ios. For example, large-scale occlusion (first row), extreme
poses (second row) and excessively blurred images (third
row) can lead to large reconstruction errors.



Table S7. Quantitative comparisons on Animal3D, CtrlAni3D and AnimalKingdom datasets. Bold numbers indicate the best values.
P@H, P@0.1, P@0.15, PAJ, and PAV represent PCK@HTH, PCK@0.1, PCK@0.15, PA-MPJPE, and PA-MPVPE, respectively.

Dataset Animal3D CtrlAni3D Animal Kingdom

Metric AUC↑ P@H↑ PAJ↓ PAV↓ AUC↑ P@H↑ PAJ↓ PAV↓ AUC↑ P@H↑ P@0.1↑ P@0.15↑
AniMer-c 87.2 86.3 85.9 90.4 91.7 93.4 59.5 64.2 80.6 80.4 28.6 47.5
AniMer 88.9 89.5 80.4 85.7 93.8 95.4 44.1 47.6 82.9 83.7 34.9 54.7
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Figure S3. More qualitative results on Animal3D and CtrlAni3D dataset. We compare our results with HMR [5], WLDO [2], AniMer-a
(ResNet152 backbone), AniMer-b (no pretraining), AniMer-c(train only one stage) and HMR2.0 [4].

Our framework is based on SMAL, which is suitable for
most quadrupedal animals. However, animals such as mice,
fish, and birds cannot be represented using SMAL. As a

result, we plan to adapt AniMer to accommodate a broader
range of animal species in the future.

In addition, with the advent of large-scale synthetic
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Figure S4. Results on the Animal Kingdom dataset.

datasets (e.g., GenZoo [8]), we will further explore the per-
formance of dataset scaling and contrastive learning on these
extensive datasets.
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Figure S5. Failure cases.
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