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Figure 8. (Left) CLIP’s anomaly unawareness: Category-level image-text alignment in pre-training leads to CLIP’s vague distinctions
in anomaly/normal semantics and inaccurate patch-text alignment. (Middle) Our two-stage adaptation strategy: In Stage1, anomaly
and normal text features are disentangled as anchors in text space; in Stage2, patch-level visual features are trained to align to these an-
chors, forming Anomaly-Aware CLIP. (Right) Generalizable anomaly awareness: Our method enables CLIP with generalizable anomaly
awareness for both known and unseen classes.

This Supplementary Material contains the following
parts: 1) Additional Information about SOTA models,
datasets and implementation details in Sec. A; 2) Additional
experiments and further analysis about prompts, hyper-
parameters, and data-efficient training in Sec. B; 3) Pseudo-
Code Implementation for AA-CLIP in Sec. C; 4) Additional
visualization of image feature t-SNE and anomaly maps in
Sec. D.

A. Additional Information
A.1. SoTA Models
To demonstrate the superiority of AA-CLIP, we compare
our methods with baseline CLIP [42] and broad recent
SoTA models. The introductions are given as follows:
• CLIP [42], is a powerful multimodal model that learns

to associate images and text through contrastive learning
on large-scale datasets. By jointly training image and text
encoders, CLIP can perform zero-shot classification, en-
abling it to understand and relate visual and textual in-
formation without task-specific fine-tuning. We use the
prompts in VAND [7] to generate predictions for anomaly
detection tasks.

• WinCLIP [19], published in CVPR 2023, enhances
CLIP with a compositional ensemble of prompt tem-
plates and an efficient feature extraction method across
image patches. It efficiently extracts and aggregates
window/patch/image-level features to align with text,
making progress in anomaly detection and segmentation
tasks. The results of WinCLIP in our paper are copied
from [18, 59].

• VAND [7] is a winning approach for the CVPR 2023
Zero/Few-shot Track of the Visual Anomaly and Novelty
Detection (VAND) 2023 Challenge. It enhances CLIP
with additional linear layers to map image features into
a shared embedding space for anomaly map generation.
The results of VAND in our paper is inferred from their
official weights.

• MVFA-AD [18] is a work adapting CLIP to AD tasks,
published in CVPR 2024. It proposes a multi-level adap-
tation framework to progressively refine image features.
They mainly focus on medical domain in their original
work. We re-train the model using the original code and
original configuration to validate its generalization abil-
ity, except using VisA as training dataset.

• AnomalyCLIP [59] is published in ICLR 2024, which
is the first work targeting prompt-learning techniques to
improve CLIP. It learns object-agnostic text prompts that
capture general indicators of normality and abnormality,
allowing the model to detect anomalies without being tied
to specific object semantics. The results in our paper is
inferred from the official weight.

• AdaCLIP [6] published in ECCV 2024. It incorporates
static and dynamic prompts allowing for shared and real-
time adaptation, demonstrating strong zero-shot perfor-
mance and generalization across diverse datasets. Their
original implementation incorporates training in both in-
dustrial and medical datasets. We re-train the model with
identical setting using VisA dataset.
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A.2. Datasets
We conduct extensive experiments on ten public datasets
from industrial and medical domains, covering five modal-
ities. For each dataset, we use only the test set. Relevant
details of the datasets are presented in Tab. 4.

Dataset Domain Modalities Classes Number of Samples
Normal Anomaly

MVTec-AD Industrial Photography 15 467 1258
MPDD Industrial Photography 6 176 282
BTAD Industrial Photography 3 451 290

Brain MRI Medical MRI 1 640 1013
Liver CT Medical CT 1 833 660
Retina OCT Medical OCT 1 1041 764
ColonDB Medical Endoscopy 1 0 380
ClinicDB Medical Endoscopy 1 0 612
Kvasir Medical Endoscopy 1 0 1000
CVC-300 Medical Endoscopy 1 0 60

Table 4. Key Information of The Datasets Used

A.3. Additional Implementation Details
During training, all images are resized to 518⇥ 518 pixels.
Data augmentation techniques—including color jitter, ran-
dom rotation, random affine transformation, random hor-
izontal flip, and random vertical flip—are applied with a
probability of 0.5. Additionally, the default normalization
of OpenCLIP is applied to all datasets during both train-
ing and inference. The hyper-parameters for Adam opti-
mizer are set to �1 = 0.5, �2 = 0.999, following previous
work [18]. For the first stage, the batch size is set to 16,
while for the second stage, the batch size is 2.

A.4. Prompts
The prompt templates and descriptors we use are listed in
Tab. 5. During both training and inference, “[CLS]” is re-
placed with the class description, and normal or anomaly
descriptors are inserted into the templates. Normal and
anomaly anchors are generated by averaging the embed-
dings of different prompts.

State Prompt

Prompt Template {}
a photo of a {}

Normal Descriptors
[CLS]
a [CLS]
the [CLS]

Anomaly Descriptors

damaged [CLS]
broken [CLS]
[CLS] with flaw
[CLS] with defect
[CLS] with damage

Table 5. Templates of Prompts Used

Considering the setting of AD aims to identify anomalies
without prior knowledge of the specific anomaly types, we

:
!:

Oval white pill with small red speckles and 
the letters 'FF' engraved

Please generate a concise and clear CLIP prompt for 
the given images.

Three-legged transistor placed 
vertically

Brown L-shaped metal bracket with smooth, 
glossy finish and multiple mounting holes 
along its arms

Metal clamps with black adjustment knobs

:
:
:

Figure 9. Examples of GPT-4 Generated Class Discription.

use only general adjectives to represent anomaly semantics,
as shown in (Bottom). To describe a class, we utilize GPT-4
to automatically generate descriptions. Notably, only nor-
mal samples are input to GPT-4 to ensure proper generation,
as shown in Fig. 9.

B. Additional Experiments
B.1. Prompts
B.1.1. Templates
To demonstrate the robustness of our model across various
prompt templates, we present additional experimental re-
sults in Tab. 6. We obtain inference results from the full-
shot trained model using both seen and unseen prompt tem-
plates, testing on the BTAD and Retina OCT datasets. The
results with novel prompt templates indicate that the effec-
tiveness in differentiating anomalies is not dependent on the
specific prompt templates used.

Prompt BTAD Retina OCT
Pixel Image Pixel Image

Seen {}. 97.0 94.7 95.5 82.7
a photo of {}. 97.4 94.8 95.6 82.7

Unseen

a picture of {}. 97.3 94.6 95.4 82.3
this is a photo of {}. 97.3 94.6 95.7 82.4
there is a {}. 97.2 95.1 95.6 82.3
a {} in the scene. 96.7 95.4 95.6 82.1
a close-up photo of {}. 97.3 94.7 95.6 82.4

Table 6. AUROC Results of Different Prompt Templates Used

B.1.2. Anomaly Semantics
To demonstrate that our model successfully learns general-
izable anomalous semantics, we present additional experi-
mental results using different anomaly descriptors in Tab. 7,
including seen and unseen ones. We obtain inference results
from the full-shot trained model using both seen and unseen
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Figure 10. Ablation Study of Hyper-parameters

anomaly descriptors on the MPDD and Retina OCT datasets
as examples. The results with novel anomaly descriptors in-
dicate that the effectiveness in differentiating anomalies is
not dependent on the specific adjectives used to describe
anomaly in the prompts, further validating that our model
successfully equips CLIP with anomaly-awareness.

Prompt MPDD Retina OCT
Pixel Image Pixel Image

Seen

damaged [CLS] 96.6 75.0 95.4 81.8
broken [CLS] 96.8 75.1 95.4 82.6
[CLS] with flaw 96.7 75.6 94.6 82.8
[CLS] with defect 96.6 75.3 95.6 82.6
[CLS] with damage 96.5 75.4 95.4 82.6

Unseen

corrupted [CLS] 94.3 72.9 93.3 82.5
defective [CLS] 96.4 75.1 95.5 82.9
flawed [CLS] 96.6 74.4 95.5 82.6
impaired [CLS] 96.7 75.5 94.9 80.9
[CLS] with defective parts 96.1 73.0 95.2 81.7
[CLS] with damaged parts 97.1 73.0 95.4 81.5

Table 7. AUROC Results of Different Anomaly Descriptors Used

B.2. Additional Ablations for Hyper-parameters
We provide additional results of different hyper-parameter
settings in this section, as shown in Fig. 10. The hyper-
parameters include:
• � controls the residual fusing ratio,
• � controls the weight of Disentangle Loss Ldis,
• KT /KI controls layers of inserted adapters in text/visual

encoder.
A large residual ratio � means that the output contains

less information from CLIP and more information from lin-
ear adapter, allowing more flexible adaptation and leading
to improvement when �  0.1. However, due to the model-
ing limitation and catastrophic forgetting, zero-shot perfor-
mance drops dramatically after � � 0.3.

Since Ldis is a normalization loss without information
flowing from training data, a large � can be detrimental

Figure 11. Additional Results under Different Data Levels

to the learning process because of semantic disturbance to
CLIP’s feature space, leading to performance drop.

For KT /KI , inserting adapters in shallow layers pre-
vents drastic semantic changes caused by inserting adapters
in deep layers and maintains training stability. Large
KT /KI damages overall performance significantly because
of higher possibility of catastrophic forgetting with more
trainable parameters. Since it contains more semantically
meaningful information in text space, the performance fluc-
tuation for text encoder is more obvious compared to image
encoder.

B.3. Comparison under Various Data Levels
We re-implement SOTA methods for comparison under dif-
ferent settings: 2-shot per class, 16-shot per class, 64-
shot per class, and full-shot, presented in line-figure for-
mat. In addition to the BTAD results shown in our main
paper, additional figures are displayed in Fig. 11. Our
method demonstrates relatively stable superiority across all
methods, maintaining a leading position in most scenarios.
These results prove that our training strategy has high fitting
efficiency.
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Despite notable domain gaps among test datasets, which
can cause some variability in results, our model’s perfor-
mance generally improves as training data increases, with
minor fluctuations. We provide an explanation as follows:
with limited data, the adapted image encoder initially lever-
ages textual cues, effectively identifying anomalies while
occasionally leading to false positives. As more data be-
comes available, the model captures richer and more bal-
anced features, further enhancing accuracy. However, with
excessive data, the model may start to capture domain-
specific details over broader abnormality semantics, reduc-
ing generalization to unseen anomalies. This trend aligns
with our visualizations and is consistent across our imple-
mentations of other methods, leaving space for further in-
vestigation on stable adaptation.

C. Pseudocode Implementation for AA-CLIP
To clearly demonstrate AA-CLIP model, we present our
model definition using PyTorch-style pseudocode, as shown
Fig. 12.

class AdaptedCLIP(nn.Module):

# forward function of text encoder with ResidualAdapters

# x: bs,2,d

def forward_text(x):

layer = 0

while layer < K: 

# layers with adapters inserted in

x = CLIP_text_encoder[layer](x)

x_adapted = ResidualAdapter(x)

# residual adaptation

x = l * x+(1-l) * x_adapted
layer += 1

while layer < CLIP Layers: 

# layers without adapters inserted in

x = CLIP_text_encoder[layer](x)

layer += 1

x=Proj(x)

return x

# forward function of image encoder with ResidualAdapters

# x: bs,N,d

def forward_image(x):

layer = 0

tokens=[]

while layer < K: 

# layers with adapters inserted in

x = CLIP_image_encoder[layer](x)

x_adapted = ResidualAdapter(x)

x = l * x+(1-l) * x_adapted
if layer in Output Layers:

tokens.append(x) # intermediate output

layer += 1

while layer < CLIP Layers: 

# layers without adapters inserted in

x = CLIP_image_encoder[layer](x)

if layer in Output Layers:

tokens.append(x) # intermediate output

layer += 1

x=[Proji(x) for i in range(len(Output Layers))]

return x

Figure 12. Pseudocode Implementation of AA-CLIP

D. Additional Visualization
D.1. Image t-SNE Visualization
In our main paper, we present t-SNE visualizations for text
embeddings of both seen and unseen classes. Additionally,
we include further visualizations of image features for seen

classes in Fig. 15 and for unseen classes in Fig. 16. The re-
sults for original CLIP and AA-CLIP are from same t-SNE
optimization iterations. We keep the number of normal and
anomaly patches the same for clear visualization. The re-
sults prove that our model succeed in equipping CLIP with
generalizable anomaly discrimination ability.

D.2. Anomaly Maps Visualization
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Figure 13. Additional Visualization Examples of AnomalyCLIP
and AA-CLIP.
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Figure 14. Additional Visualization Examples of AnomalyCLIP
and AA-CLIP.

We provide additional visualization examples of AA-
CLIP to illustrate the effectiveness of our method. We show
more comparative results of recent SOTA AnomalyCLIP
and our methods in Figs. 13 and 14. Despite AnomalyCLIP
can identify anomalous regions, our model’s predictions
have less false-positive predictions and localizes anomalous
regions more precisely.

We provide more examples of our AA-CLIP’s predic-
tion, as shown in Figs. 17 to 28. For each figure, the first
row shows the input, with anomaly regions highlighted in
red in the second row. The final row displays the segmenta-
tion results generated by AA-CLIP. Our model shows pre-
cise localization results in general.
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Figure 15. Additional t-SNE Visualization of Visual Features of Seen Classes
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Figure 16. Additional t-SNE Visualization of Visual Features of Unseen Classes
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Figure 17. Visualization Examples of Class Bottle in MVTec-AD dataset.

Figure 18. Visualization Examples of Class Capsule in MVTec-AD dataset.

Figure 19. Visualization Examples of Class Grid in MVTec-AD dataset.

6



Figure 20. Visualization Examples of Class Carpet in MVTec-AD dataset.

Figure 21. Visualization Examples of Class Hazelnut in MVTec-AD dataset.

Figure 22. Visualization Examples of Class Zipper in MVTec-AD dataset.
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Figure 23. Visualization Examples of Class Toothbrush in MVTec-AD dataset.

Figure 24. Visualization Examples of Class Tubes in MPDD dataset.

Figure 25. Visualization Examples of Brain MRI dataset.
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Figure 26. Visualization Examples of Retina OCT dataset.

Figure 27. Visualization Examples of endoscopic photos in ClinicDB dataset.

Figure 28. Visualization Examples of endoscopic photos in CVC-300 dataset.
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