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1. Supplementary Method
1.1. Divide All Classes into Subsets
In this section, we present a grouping strategy for multi-label
image classification (MLC), which divides the labels into
several subgroups. Each subgroup is dedicated to addressing
different label relationships. And, a similar method has been
shown in BootMLC [16]. Each of these simpler subtasks is
processed individually and in parallel, with the correlations
among the labels being modeled within each subtask. These
are then integrated to formulate a comprehensive solution to
the original task. In our setting, we decompose the modeling
of label correlation into co-occurrence and dis-occurrence.
Concretely, we construct a co-occurrence graph G+ and a
dis-occurrence graph G− to encode the correlative represen-
tations between labels and the discriminative representations
of each label. Firstly, we count the co-occurrence of la-
bel pairs to obtain the co-occurrence matrix S ∈ RK×K ,
and Si,j represents the probability of occurrence of label yj

when label yi is present. Subsequently, a smoothing opera-
tion and a symmetrization are employed to derive the affinity
matrix as follows:

M =

{
M+ = ( τ

√
S+ τ
√
S
⊤
) / 2, G = G+

M− = I− ( τ
√
S+ τ
√
S
⊤
) / 2, G = G−

where τ is a positive hyper-parameter to adjust the distribu-
tion of co-occurrence matrix S, and the τ

√
S
⊤

denotes its
transpose. The symmetrization ensures an undirected graph,
with bidirectional connection strengths. The affinity matrix
M+ and M− are utilized to encode the co-occurrence rela-
tionship and dis-occurrence between categories respectively.
Then we leverage them to generate the Laplacian matrix and
treat the decomposition problem as a spectral clustering [14]
problem as follows:

F̂← argmin
F

Trace(FTLsynF), s.t. FTF = I,

where Lsyn = I−D− 1
2MD− 1

2 represents the normalized
Laplacian matrix and D is the degree matrix of graph G.
F is the learned graph embedding of vertices (categories),
and F̂ indicates the top-k minimum eigenvectors of Lsyn.
We cluster the F̂ via the k-means algorithm into clusters
{Ct}Tt=1. Ultimately, the original task can be decomposed
into T sub-tasks {Tt}Tt=1 according to the clustered class
subset. Correspondingly, sub-tasks {T +

t }Tt=1 derived from
the graph G+, acts as a guide for the model to learn the shared
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Figure 1. An example of grouping all classes in both co-occurrence
and dis-occurrence graphs within the COCO, with each graph di-
vided into 5 groups.

representations under co-occurrence relationship, whereas
sub-tasks {T −

t }Tt=1 generated from graph G− promotes the
model to focus on learning discriminative representations
for each class by masking the correlations among labels. In
Fig. 1, we present an example of grouping classes on COCO.

1.2. Optimizing Objective in MLC
Most MLC methods often use Binary Cross-Entropy (BCE)
as the loss function, which converts the problem into several
binary classification tasks:

LBCE(f(x),y)=
∑L

k=1
[ykℓ1(fk(x))+(1−yk)ℓ0(fk(x))].

Here, ℓ1(fk)=−(1−fk) log(fk) and ℓ0(fk)=−fk log(1−
fk) represent the losses calculated on positive and negative
labels. To simplify the notation for clarity, we let f(x)
represent the probability distribution of example x and fk(x)
denote the probability of the k-th class.
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In MLC, the imbalance between positive and negative
classes in each instance is a common issue. To address this,
we adopt the asymmetric loss (ASL) [12] as the multi-label
classification loss, as suggested by prior researchs [9, 10, 15].
ASL dynamically down-weights the easy negative samples
and directs the optimization process towards the positive
samples:

LASL(f(x),y)=
∑K

k=1
[ykℓ1(fk(x))+(1−yk)ℓ0(fk(x))],

s.t. ℓ1(fk) = −(1− fk)
λ1 log(fk) ,

ℓ0(fk) = −(fk)λ0 log(1− fk) .

ℓ1 and ℓ0 calculate the positive and negative class losses,
respectively. λ1 ≥ 0 and λ0 ≥ 0 are the hyperparameters of
the positive and negative classes. Additionally, experiments
demonstrate that ASL outperforms BCE. In this work, we
set λ0 to 2 and λ1 to 0.

1.3. Pseudo-Code of Proposed Method
In order to describe our proposed algorithm more clearly, we
summarize it in the form of pseudo-code in Algorithm 1.

2. Supplementary Experiments

2.1. Dataset
In Tab. 1, we present four key characteristics of three bench-
mark datasets, including the number of training images, the
number of test images, and the average number of labels per
image. Pascal VOC 2007 [5] is a popular multi-label dataset
containing 20 object categories, divided into a trainval
set with 5,011 samples and a test set with 4,952 sam-
ples. MS-COCO 2014 [8] is another widely used multi-label
dataset with 80 common categories, consisting of 82,081
training examples and 40,504 validation examples. Follow-
ing prior majority work [2, 10], we use all of its validation
examples as the test set, along with the 82,081 training
images as the train set. NUS-WIDE [3] is a web image
dataset containing 81 categories, with all images sourced
from Flickr. In our experiments, we select 126,034 training
images as the train set and 84,226 test images as the test
set. Visual Genome [7] is a knowledge base and dataset con-
taining 108,249 images covering 80,138 categories, each of
which is annotated by humans with visual concepts. Given
that most categories have very few samples and many cate-
gories share similar semantic concepts, we further processed
this dataset. Following previous work [15], we merged cate-
gories with the same meaning and excluded categories with
fewer than 500 images. Finally, we obtained a dataset called
VG256, comprising 256 classes and 108,249 images, with
70% of the images used as the train set and 30% as the
test set. Objects365 (O365) [13] is a large-scale object
detection dataset with more than 600,000 images covering

365 different categories of everyday objects. It aims to pro-
vide a more comprehensive and diverse object recognition
scenario. Compared with COCO, O365 provides more cate-
gories and images, which is more in line with real scenes and
is, therefore, more suitable for multi-label image learning.
Similar to the COCO dataset, annotation information is un-
available for the test set. Consequently, we designated the
train set, which comprises 1,742,292 images, for training,
and all validation examples as test set, containing 193,588
images, for testing.

2.2. Evaluation Metrics
In this work, beyond mean average precision (mAP), the
standard metrics reported in the experimental section include
overall precision (OP), overall recall (OR), overall F1 score
(OF1), as well as per-category precision (CP), per-category
recall (CR), and per-category F1 score (CF1). These metrics
are computed as follows:

OP =

∑
i TPi∑

i TPi + FPi
, OR =

∑
i TPi∑

i TPi + FNi
,

CP =
1

C

∑
i

TPi

TPi + FPi
, CR =

1

C

∑
i

TPi

TPi + FNi
,

OF1 =
2×OP×OR

OP+OR
, CF1 =

2× CP× CR

CP+ CR
,

where TPi is true positive of class i, FPi is false positive
of class i, FNi is false negative of class i. Among the met-
rics, OF1 and CF1 are the most significant, as they take both
recall and precision into account, offering a more comprehen-
sive evaluation. Moreover, with the exception of mAP, note
that these results may be sensitive to the chosen threshold.

2.3. Compared to State-of-the-Art Results
Performance on Objects365. To evaluate our method on
a more comprehensive and realistic dataset, we compared
our approach with state-of-the-art (SOTA) methods on the
O365. The results are presented in Table 2, demonstrating
that our method improves mAP, CF1 and OF1 by 0.9-4.1%,
0.4-3.1% and 0.6-2.5%, respectively. The effectiveness of
our proposed method is verified on a larger dataset with
stronger label relationships.

2.4. Diagnostic Experiments
Number of Groups. Due to the limitations in the length of
the main body, we present a comprehensive evaluation of the
number of groups as shown in Fig. 3, which are conducted
on COCO and VOC07, including metrics such as mAP, CF1,
and OF1. The overall results indicate that increasing the
number of groups has improved the performance of our
method, although some minor fluctuations were observed.
Number of Experts. Due to space constraints in the main
body, we present a comprehensive evaluation of the study
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Algorithm 1: Multi-Label Visual Prompt Tuning for Multi-Label Image Classification
1 Input & Prepare: Given a multi-label image dataset D = {(xi,yi)}Ni=1 with K classes, and their label co-occurrence graph G+

and dis-occurrence graph G−, where 1 = G+ + G−.
2 Grouping classes into multiple groups {C+t }Tt=1 ← GraphPartition(G+) and {C−t }Tt=1 ← GraphPartition(G+) // Apply a

clustering algorithm on the graph (G+) and G−)

3 Freeze the ViT parameters and add a set of learnable prompt tokens (P+ / P−) for {C+t }Tt=1 and {C−t }Tt=1, respectively,
ViT(x) = ViT([P+,P−],x) // Using VPT technology to build a visual encoder model

4 for k = 1 to MaxEpoch do
5 Obtain group-level representations Z+ ∪ Z− = ViT(x)

6 Obtain label-aware representations {c+k }
K
k=1 = MoE(Z+) , {c−k }

K
k=1 = MoE(Z−) // Using MoE

7 Calculate logits ŷ+ = {ŷ+
k }

K
k=1 = Classifier+({c+k }

K
k=1) , ŷ− = {ŷ−

k }
K
k=1 = Classifier−({c−k }

K
k=1)

8 Update model f(·) with LASL(ŷ
+,y) + LASL(ŷ

−,y)

9 end
10 Output: The trained multi-label visual prompt tuning model f(·).
11 Predict: ŷ = 0.5 · (ŷ+ + ŷ−) = f(x)
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Figure 2. Visualization of group heatmap from the final layer of the ViT on COCO. The left side is the correlative groups, and the right side is
the discriminative groups. As the main body, we also highlight the top-20 image patches based on heatmap scores.

Table 1. Statistics for the popular benchmark dataset, including the
number of training images, test images, categories, and average
number of labels per image.

Dataset # Train # Test # Classes # Avg. Pos.

Pascal VOC 2007 (VOC07) 5,011 4,952 20 1.5
MS-COCO 2014 (COCO) 82,081 40,504 80 2.9
NUS-WIDE (NUS) 126,034 84,226 81 2.4
Visual-Genome (VG256) 75,773 32,475 256 7.3
Objects365 (O365) 1,742,292 193,588 365 6.1

on the number of experts as shown in Fig. 4, which are con-

ducted on COCO and VOC07, including metrics such as mAP,
CF1, and OF1. The results show that, on the COCO dataset,
our method performs better as the number of experts in-
creases. In contrast, on the VOC07 dataset, the performance
improvement with more experts fluctuates significantly. One
possible explanation is that the smaller number of categories
in each group does not require more prompt tokens to cap-
ture label relationships, so the transition from group-aware
representation to label-aware representation does not require
as many experts.
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Table 2. Comparison of our method with SOTA models on O365
at 224 × 224 resolution. All metrics are in %.

Resolution: 224 × 224Method Backbone mAP CP CR CF1 OP OR OF1
VPT 37.6 39.3 39.4 39.4 60.4 60.6 60.5

GateVPT 36.3 38.4 38.4 38.4 58.8 59.0 58.9
E2VPT 37.9 39.6 39.6 39.6 60.5 60.7 60.6

Ours
ViT-B

40.0 41.3 41.4 41.3 61.7 61.8 61.7
VPT 31.5 34.3 34.4 34.4 60.2 60.4 60.3

GateVPT 26.8 29.9 30.0 30.0 56.9 57.1 57.0
E2VPT 29.6 32.4 32.5 32.4 59.4 59.5 59.4

Ours
MAE

31.1 33.9 33.9 33.9 60.6 60.7 60.7
VPT 31.8 34.5 34.5 34.5 58.1 58.3 58.2

GateVPT 31.8 34.5 34.5 34.5 58.1 58.3 58.2
E2VPT 31.8 34.4 34.5 34.4 58.0 58.3 58.2

Ours
MoCO v3

33.6 35.7 35.7 35.7 59.1 59.2 59.2
VPT 44.3 45.0 45.1 45.1 64.1 64.3 64.2

GateVPT 42.9 44.0 44.0 44.0 62.8 63.1 62.9
E2VPT 44.1 44.9 44.9 44.9 64.1 64.3 64.2

Ours
ViT-B-21k

45.2 45.5 45.5 45.5 64.7 64.8 64.8
VPT 49.3 49.3 49.3 49.3 69.6 69.8 69.7

GateVPT 48.1 48.4 48.5 48.4 68.3 68.5 68.4
E2VPT 49.2 49.2 49.3 49.3 69.5 69.7 69.6

Ours
DINOv2/B

52.2 51.5 51.5 51.5 70.8 71.0 70.9
VPT 40.1 41.5 41.6 41.6 64.2 64.4 64.3

GateVPT 39.0 40.8 40.8 40.8 62.7 62.9 62.8
E2VPT 40.2 41.8 41.8 41.8 64.2 64.4 64.3

Ours
DINOv2/S

41.4 42.7 42.8 42.7 65.2 65.3 65.3
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Figure 3. The performance curve varies with the increase in the
number of groups, in the 3 evaluation metrics: mAP, CF1, and OF1.

Effect of Group Strategy. To further validate the effective-
ness of the grouping strategy, we selected label pairs with
co-occurrence probabilities greater than 0.2 from on COCO.
As shown in Fig. 5, the we proposed ML-VPT outperforms
the VPT method in terms of CTPR and CFPR for approxi-
mately 88.4% and 85.3% of the label pairs respectively. The
higher CTPR indicates that ML-VPT has a stronger ability
to capture correlational features, while the lower CFPR sug-
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Figure 4. The performance curve varies with the increase in the
number of experts, in the mAP, CF1, and OF1.

gests that ML-VPT effectively balances both correlational
and discriminative features, thereby reducing the risk of over-
fitting. Notably, the label pairs in the figure are sorted based
on the VPT results for clarity and aesthetic purposes.
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Figure 5. Comparison between VPT and ML-VPT (ours) in terms
of conditional TPR and FPR, the label pairs with co-occurrence
probabilities larger than 0.2 on COCO is selected.

Delve into Grouping Strategy. Our method divides classes
into correlative and discriminative groups to balance their
relationships. For comparison, we also conduct experiments
with only correlative grouping (VPT-CO) and only discrim-
inative grouping (VPT-DC), as shown in Figure 6. While
both VPT-CO and VPT-DC show an overall improvement
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in mean Average Precision (mAP) over VPT, they lead to
significant accuracy drops for certain classes. Our grouping
strategy (GVPT) avoids this issue, providing strong evidence
that balancing correlative and discriminative groups is both
effective and reasonable.
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Figure 6. Per-class mAP increment for VPT-CO (with only cor-
relative groups), VPT-DC (with only discriminative groups), and
GVPT (both correlative and discriminative groups).

Effect of Mixture-of-Experts In this work, mixture of ex-
perts(MoE) is employed to allocate group-aware represen-
tations to label-aware representations, aiming to improve
classification performance. To evaluate the effectiveness of
the MoE strategy, we present the mAP increment when MoE
is incorporated, compared to its absence, as depicted in Fig-
ure 7, MoE demonstrates a beneficial effect for 93.75% of
the labels, with only 5 labels exhibiting a slight decrement.
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Figure 7. Per-class mAP increment for Mixture-of-experts.

Gating Network Strategy: Label-Aware or Group-Aware.
To compare the performance of building gating networks
at both the label-aware and group-aware, we conducted the
following experiments on the COCO dataset using various
pre-trained models. The reported results represent the aver-
age performance of each method across these models. As
illustrated in Tab. 3, the label-aware gating network strategy

outperforms the group-aware strategy. This superiority is
attributed to the label-aware gating network’s ability to select
group-aware representations that are most appropriate for
the current class, based on the image-specific. In contrast,
the group-aware strategy does not account for this selection.
Note that in this work, we choose the label-aware gating
networks.

Table 3. Comparison of two ways to build gating networks on
COCO. All metrics are in %.

Method Avg. mAP Avg. CF1 Avg. OF1
Group Level 79.96 73.93 77.32
Label Level 80.60 74.41 77.64

Randomization Grouping strategies. The results, which
are averaged across multiple pre-trained models (including
ViT [4], ViT-21k [4], MAE [6], MoCo v3 [1], DINOv2/S
[11], and DINOv2/B [11]), are presented in Tab. 4. Our
grouping strategy outperforms all others, including random
grouping. Note that in this experiment, we do not consider
using MoE. We hypothesize that random grouping might
somewhat balance relevance and discrimination relation-
ships; however, it is not the optimal strategy.

Table 4. Comparison between multiple grouping strategies on
COCO. All metrics are in %.

Method Avg. mAP Avg. CF1 Avg. OF1
Random-Group 78.39 72.67 76.40

CO-Group 77.79 72.21 75.97
DC-Group 77.96 72.30 76.08

CO-Group&DC-Group 78.84 73.00 76.58

2.5. More Case Study
Visualization of Group Heatmap. To demonstrate that
our method effectively learns group-aware representations
(group-aware representations) through our grouping strategy,
we present a visualization of the group heatmap in Fig. 2.
These results show that our method can model the relation-
ship between relevant labels and discriminative labels.
Weights Assigned to Experts. As shown in Tab. 5, the
proposed MoE effectively assigns distinct weights to differ-
ent classes across various images. For instance, although
bottle and broccoli are grouped within the same
group, the weights required for these two classes by the
three experts differ significantly.

Table 5. Weights assigned to experts for different classes on COCO.
From left to right, they are the image ID, class name, and the weight
assigned by the corresponding expert to the corresponding class.

Image ID Classes Name Expert 1 Expert 2 Expert 3
000000001000 person 3.0e-06 9.9e-01 3.2e-04
000000010056 car 9.5e-01 2.2e-02 2.5e-02
000000100000 cat 9.9e-01 3.3e-05 1.1e-04
000000100132 fork 4.4e-04 1.9e-03 9.9e-01
000000100238 bottle 5.1e-01 3.1e-01 1.8e-01
000000100624 car 2.3e-05 9.9e-01 2.9e-03
000000100582 fork 4.3e-01 3.1e-01 2.5e-01
000000100811 person 2.5e-02 6.1e-01 3.6e-01
000000113294 boat 1.5e-01 8.5e-01 6.8e-05
000000214919 broccoli 2.7e-05 1.8e-04 9.9e-01
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