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1. Proof

In Sec. 1.1 and Sec. 1.2, we demonstrate that DeMe can
be formally transformed into a loss reweighting framework,
just like previous works [3, 6, 15].

1.1. The Derivation of Some Loss Reweighting
Strategies

The standard diffusion loss can be formulated as follows:

Lstandard = Et,x0,ϵ

[
∥ϵ− ϵθ (xt, t)∥2

]
. (1)

It is worth noting that Equation 1 is identical to Lθ in Equa-
tion 2 in main paper. For the convenience of subsequent
explanations, it has been restated here.

Actually, Equation 1 uses ϵ as the prediction target, but
we can equivalently transform it into a loss function where
x0 is the prediction target:

Lstandard = Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
= Et,x0,xt
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]
= Et,x0,xt

[
SNR(t) ∥x0 − xθ(xt, t)∥2

]
,

where SNR(t) = ᾱt

1−ᾱt
. Salimans and Ho [15] propose a

loss reweighting strategy named Truncated SNR:

LTrun-SNR = Et,x0,xt

[
max (SNR(t), 1) ∥x0 − xθ(xt, t)∥2

]
,

which is primarily designed to prevent the weight coeffi-
cient from reaching zero as the SNR approaches zero. Ad-
ditionally, Salimans and Ho [15] propose a new prediction
target:

v =
√
ᾱtϵ−

√
1− ᾱtx0. (2)

Similarly, the objective function that uses v as the pre-
diction target can also be equivalently transformed into an

objective function where x0 is the prediction target:

LSNR+1 = Et,x0,v

[
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.

Furthermore, a new reweighting strategy [6] has been
proposed to achieve accelerated convergence during the
training process, named Min-SNR-γ:

LMin-SNR-γ = Et,x0,xt

[
min (SNR(t), γ) ∥x0 − xθ(xt, t)∥2

]
.

Additionally, P2 Weighting [3] proposes to assign min-
imal weights to the unnecessary clean-up stage thereby as-
signing relatively higher weights to the rest, the weighting
term is:

LP2 = Et,x0,ϵ

[
1

(k + SNR(t))γ
∥ϵ− ϵθ (xt, t)∥2

]
= Et,x0,xt

[
SNR(t)

(k + SNR(t))γ
∥x0 − xθ (xt, t)∥2

]
,

(3)

and the author recommends using k = 1 and γ = 1.

In a word, if the prediction target is x0, the reweighting
strategies can be written as follows:

• Standard diffusion loss [7]:

Lstandard = Et,x0,xt

[
SNR(t) ∥x0 − xθ(xt, t)∥2

]
(4)

• SNR+1 [15]:

LSNR+1 = Et,x0,xt

[
(SNR(t) + 1) ∥x0 − xθ(xt, t)∥2

]
(5)

• Truncated SNR [15]:

LTrun-SNR = Et,x0,xt

[
max (SNR(t), 1) ∥x0 − xθ(xt, t)∥2

]
(6)

• Min-SNR-γ [6]:

LMin-SNR-γ = Et,x0,xt

[
min (SNR(t), γ) ∥x0 − xθ(xt, t)∥2

]
(7)



• P2 Weighting [3]:

LP2 = Et,x0,xt

[
SNR(t)

(k + SNR(t))γ
∥x0 − xθ (xt, t)∥2

]
(8)

1.2. Transform DeMe Framework to Loss
Reweighting Framework

In Sec. 3.2, we divide the overall timesteps [0, T ) into N
multiple continuous and non-overlapped timesteps ranges,
which can be formulated as {(i−1)T/N, iT/N}Ni=1. For each
range, we finetune a diffusion model ϵθi , the training objec-
tive of ϵθi can be formulated as follows:

Li = E
t∼U[ (i−1)T

N , iTN ],x0,ϵ[
∥ϵ− ϵθi (xt, t)∥2 + ∥ϵθ (xt, t)− ϵθi (xt, t)∥2

]
.

(9)

In Equation 9, the first term is the standard diffusion loss
over the subrange, and the second term is the consistency
loss, ensuring that the finetuned model ϵθi stays close to the
original model ϵθ.

In Sec. 3.3, we compute task vector τi = θi−θ after fine-
tuning ϵθi , and merge N post-finetuned diffusion models by

θmerged = θ +

N∑
i=1

wiτi, (10)

where wi are the merging weights determined(via grid
search).

The update in parameters τi on due to finetuning on
timestep range i is:

τi = θi − θ = −η∇θLi, (11)

where η is the learning rate. The merged model’s parame-
ters in Equation 11 could be rewritten as:

θmerged = θ − η

N∑
i=1

wi∇θLi, (12)

which implies θmerged minimizes the combined loss

Lmerged =

N∑
i=1

wiLi. (13)

Li is computed over its respective timestep range, which
menas Lmerged can be viewed as an integration over the
entire timestep range with a piecewise constant weighting
function w (t). We rewrite Lmerged as:

Lmerged = Et∼U [0,T ],x0,ϵ[
w(t) · ∥ϵ− ϵθ(xt, t)∥2 + ∥ϵθ(xt, t)− ϵθi(xt, t)∥2

]
,

(14)

where

w(t) =

{
wi, if t ∈

[
(i−1)T

N , iT
N

)
0, otherwise

. (15)

In Sec. 3.2, we propose to use θ to initialize θi and to ut-
lize consistency loss to unsure ϵθ(xt, t) ≈ ϵθi(xt, t), which
means that the second term in Equation 14 becomes negli-
gible. The merged loss simplifies to

Lmerged = Et∼U [0,T ],x0,ϵ

[
w(t) · ∥ϵ− ϵθ(xt, t)∥2

]
= Et∼U [0,T ],x0,ϵ

[
w(t) · SNR(t) · ∥x0 − xθ(xt, t)∥2

]
.

(16)
Equation 16 is exactly the form of a reweighted loss

function over timesteps, similar to Equations 4–8.

2. Experimental Details
Implementation Details. During the finetuning process,
we set N = 4 for all four datasets, p = 0.4 for CIFAR10
dataset, p = 0.3 for LSUN-Church, LSUN-Bedroom, and
L-Aes 6.5+ datasets. For CIFAR10, each model is trained
for 20K iterations with a batch size of 64 and a learning rate
of 2e-4. For LSUN-Church, LSUN-Bedroom, and L-Aes
6.5+ datasets, each model is trained for 20K iterations with
a batch size of 16, a learning rate of 5e-5, and gradient ac-
cumulation is set to 4. We employ a 50-step DDIM sampler
for DDPM and a 50-step PNDM sampler for Stable Dif-
fusion. For model merging, we use grid search to explore
all possible combinations of coefficients. At the same time,
we use FID as the objective for the grid search to evaluate
the generative quality of the merged model. Considering
that the computational cost grows exponentially with N , it
is impractical to generate 50K images for each combination
of coefficients to compute the FID. Therefore, we gener-
ate 5K images to calculate the FID for each merged model
to expedite the search process (results reported in the pa-
per are FID-50K). Additionally, we consider variable step
size search, where we first use a larger step size to identify
a range that may contain the optimal combination of coef-
ficients. Then refine the search within this range using a
smaller step size to pinpoint the optimal combination. For
drawing Fig. 1a, we compute 1K timesteps’ pairwise gradi-
ent similarities per 2K training iterations with 512 samples.
Batchsize is set to be 128 with 4-step gradient accumula-
tion. A similar implementation is ANT GitHub1. All ex-
periments are implemented on NVIDIA A100 80GB PCIe
GPU and NVIDIA GeForce RTX 4090.

Dataset Details. For unconditional image generation
datasets CIFAR10, LSUN-Church, and LSUN-Bedroom,

1https://github.com/gohyojun15/ANT diffusion

https://github.com/gohyojun15/ANT_diffusion


we generated 50K images to obtain the Fréchet Inception
Distance (FID)for evaluation. For zero-shot text-to-image
generation, we finetune each model on a subset of LAION-
Aesthetics V2 (L-Aes) 6.5+, containing 0.22M image-text
pairs. We use 30K prompts from the MS-COCO vali-
dation set, downsample the 512×512 generated images to
256×256, and compare the generated results with the whole
validation set. We also use class names from ImageNet1K
and 1.6K prompts from PartiPrompts to generate 2K images
(2 images per class for ImageNet1k) and 1.6K images, indi-
vidually. Fréchet Inception Distance (FID) and CLIP score
are used to evaluate the quality of generated images.

3. Related Works on Model Merging
Merging models in parameter space emerged as a trend-
ing research field in recent years, aiming at enhancing
performance on a single target task via merging multiple
task-specific models [9, 13, 16, 18]. In contrast to multi-
task learning, model merging fuses model parameters by
performing arithmetic operations directly in the parameter
space [8, 17], allowing the merged model to retain task-
specific knowledge from various tasks. Diffusion Soup [2]
suggests the feasibility of model merging in diffusion mod-
els by linearly merging diffusion models that are finetuned
on different datasets, leading to a mixed-style text-to-image
zero-shot generation. MaxFusion [14] fuses multiple dif-
fusion models by merging intermediate features given the
same input noisy image. LCSC [12] searches the optimal
linear combination for a set of checkpoints in the train-
ing process, leading to a considerable training speedups
and FID reduction. Unlike Diffusion Soup [2], MaxFu-
sion [14] and LCSC [12], DeMe leverages model merging
to fuse models finetuned at different timesteps, combines the
knowledge acquired at different timesteps, and resulting in
improved model performance.

4. Related Works on Timestep-wise Model En-
semble

Previous works [1, 10, 11] have revealed that the perfor-
mance of diffusion models varies across different timesteps,
suggesting that diffusion models may excel at certain
timesteps while underperforming at others. Inspired by this
observation, several works [1, 10, 20] explore the idea of
proposing an ensemble of diffusion experts, each special-
ized for different timesteps, to achieve better overall perfor-
mance. MEME [10] propose a multi-architecture and multi-
expert diffusion models, which assign distinct architectures
to different time-step intervals based on the frequency char-
acteristics observed during the diffusion process. Zhang
et al. [20] introduce a multi-stage framework and tailored
multi-decoder architectures to enhance the efficiency of dif-
fusion models. eDiff-I [1] propose training an ensemble of

expert denoisers, each specialized for different stages of the
iterative text-to-image generation process. Spectral Diffu-
sion [19] can also be viewed as an ensemble of experts, each
specialized in processing particular frequency components
during the iterative image synthesis. Go et al. [5] leverages
multiple guidance models, each specialized in handling a
specific noise range, called Multi-Experts Strategy. OMS-
DPM [11] propose a predictor-based search algorithm that
optimizes the model schedule given a set of pretrained dif-
fusion models.

5. Additional Experiment: Comparison with
Mixture of Experts Methods

DeMe improves the performance of pretrained diffusion by
decoupling the training process and then merging the fine-
tuned models in the parameter space. Notably, although
DeMe finetunes multiple models, it ultimately obtains a sin-
gle model through the model merging method, which is
used during the inference stage. Although not directly re-
lated, we nonetheless compare several timestep-wise model
ensemble methods, also referred to as mixture-of-experts
methods, for diffusion models, as they share a similar mo-
tivation with our approach. Considering the relevance of
the experimental settings and the accessibility of the code-
base, we compare DeMe with OMS-DPM [10] and Diff-
Pruning [4], highlighting the efficiency and competitive per-
formance of DeMe compared to mixture-of-experts meth-
ods. OMS-DPM [4] trains a zoo of models with varying
sizes and optimizes a model schedule tailored to a specified
computation budget. DiffPruning [4] finetunes pruned dif-
fusion models on different timestep intervals separately to
obtain a mixture of efficient experts.

As shown in Table 1, DeMe achieves better perfor-
mance than other mixture-of-experts methods with only a
single model by utilizing the decouple-then-merge mecha-
nism. For example, on the CIFAR-10 dataset, OMS-DPM
achieved an FID of 3.80 with a time budget of 9.0 × 103

and a model zoo size of 6, whereas DeMe achieved an FID
of 3.51 with only a single model, demonstrating the effec-
tiveness of DeMe. Mixture-of-experts methods tackles dif-
ferent denoising tasks across timesteps during inference by
utilizing multiple models. In contrast, DeMe achieves com-
parable or even better performance while maintaining a sin-
gle model through its decouple-then-merge mechanism.

6. Similarity Between Task Vectors
In Fig. 1, we analyze the cosine similarity between task vec-
tors across different timestep ranges to explore how multi-
ple finetuned diffusion models can be merged into a unified
diffusion model through additive combination. We observe
that task vectors from different timestep ranges are gener-
ally close to orthogonal, with cosine similarities remaining



Table 1. Comparison results of DeMe vs. mixture-of-experts
methods for diffusion models. The number in brackets follow-
ing OMS-DPM [11] means the time budget(ms). Percentage in
bracket following DiffPruning [4] means the pruning ratio. #Mod-
els means the number of models used in the mixture-of-experts
method. #Params refers to the total number of model parameters
used during the inference process. †: improved performance to the
DDPM model. Mixture-of-experts methods achieve better perfor-
mance by leveraging the combination of multiple models in differ-
ent timesteps, whereas DeMe achieves superior performance with
only a single model through its decouple-then-merge mechanism.

CIFAR10 (32× 32)

Model #Models #Params FID (↓)
DDPM [7] 1 35.75M 4.42

OMS-DPM(9.0× 103) [11] 6 - 3.80
OMS-DPM(6.0× 103) [11] 6 - 4.07
OMS-DPM(3.0× 103) [11] 6 - 5.20

DeMe (Before Merge) 4 36.80M × 4 3.79 (−0.63)
†

DeMe (After Merge) 1 36.80M 3.51 (−0.91)
†

(a)

LSUN-Church (256× 256)

Model #Models #Params FID (↓)
DDPM [7] 1 113.67M 10.69

OMS-DPM(55× 103) [11] 6 - 10.95
OMS-DPM(25× 103) [11] 6 - 11.10
OMS-DPM(10× 103) [11] 6 - 13.70

DiffPruning (70%) [4] 2 188.09M 9.39
DiffPruning (50%) [4] 2 112.60M 10.89

DeMe (Before Merge) 4 115.31M × 4 9.57 (−1.12)
†

DeMe (After Merge) 1 115.31M 7.27 (−3.42)
†

(b)

LSUN-Bedroom (256× 256)

Model #Models #Params FID (↓)
DDPM [7] 1 113.67M 6.46

DiffPruning (70%) [4] 2 162.06M 5.90
DiffPruning (50%) [4] 2 100.87M 6.73

DeMe (Before Merge) 4 115.31M × 4 5.87 (−0.59)
†

DeMe (After Merge) 1 115.31M 5.84 (−0.62)
†

(c)

low, often near zero. We speculate that this orthogonality
facilitates the additive merging of multiple finetuned diffu-
sion models into a unified model with minimal interference,
allowing for effective combination without conflicting gra-
dients between the different timestep ranges. For instance,
timestep ranges t ∈ [0, 250) and t ∈ [500, 750) on LSUN-
Church exhibit a cosine similarity of 0.07, this relatively
low value indicates that the task vectors for these two non-
adjacent ranges are close to orthogonal, allowing for more
effective combination during model merging with minimal
interference between different denoising tasks.

Additionally, the slight deviations from orthogonality
within different timestep ranges suggest some shared in-
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Figure 1. The cosine similarity between task vectors at different
timestep ranges on two datasets: Task vectors are nearly orthog-
onal between different timestep ranges. This orthogonality sug-
gests that knowledge from different timesteps is largely indepen-
dent, allowing for effective additive combination of task vectors
with minimal interference, thereby facilitating the merging of fine-
tuned models.

formation between neighboring denoising tasks, reflecting
a degree of continuity in the model’s learning across these
ranges. These deviations also highlight the effectiveness of
the Probabilistic Sampling Strategy introduced in Sec. ??,
which ensures a balance between specialization in the range
and generalization across all timesteps, effectively preserv-
ing knowledge across different stages of denoising task
training.

7. Sensitive Study
DeMe decouples the training of diffusion models by fine-
tuning multiple diffusion models in N different timestep
ranges. A larger N indicates that the timesteps are divided
into finer ranges, further reducing gradient conflicts and po-
tentially enhancing the model’s performance. Meanwhile,
the probability p determines the tradeoff between learn-
ing from specific and global timesteps, thereby influencing
the model’s performance. Therefore, we do some sensitive
study on the influence of number of ranges N and possibility
p on CIFAR10.

Influence on Number of ranges N . A larger N implies
each diffusion model is finetuned on a narrower timestep
range, leading to less gradient conflicts. As illustrated in
Fig. 2, it is observed that: (i) Training diffusion model
across the entire timestep range results in the poorest perfor-
mance. With N = 1, i.e., training diffusion on the overall
timesteps, a minor improvement is achieved, with a FID of
4.34. We posit that severe gradient conflicts occurred, neg-
atively impacting the overall training process. (ii) The finer
the division of the overall timesteps into N non-overlapping
ranges, the more effectively it mitigates gradient conflicts,
leading to a notable reduction in FID. For example, divid-
ing the timesteps into 4 ranges can result in a 0.63 FID re-
duction, whereas dividing them into only 2 ranges leads to
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Figure 2. Sensitive study of the influence on the number of ranges
N and possibility p of training of all timesteps on CIFAR10

a reduction of just 0.4 FID. A larger N is associated with
improved model performance, indicating reduced gradient
conflicts. (iii) As N increases, the model’s training exhibits
marginal utility. For instance, when N exceeds 4, the FID
no longer follows the decreasing trend observed when N
smaller than 4. This suggests that the model’s gains notably
diminish as N increases. Considering the finetuning over-
head and the complexity of model merging, we recommend
N = 4 as a trade-off in practice.

Influence on Probability p. Probability p means a sam-
pling probability p for a diffusion model beyond its specific
timespte range, which indicates a trade-off between spe-
cific knowledge and general knowledge. Varying choices of
probability p can enhance model performance to different
extents. As shown in Fig. 2, it is observed that: (i) Training
solely on either the full timestep range or specific subranges
limits knowledge sharing, resulting in only minor improve-
ments. P = 0 corresponds to training across all timesteps,
while p = 1 focuses exclusively on a specific range. Both of
these settings restrict knowledge transfer between the over-
all and specific timestep ranges, leading to modest FID re-
ductions of 0.28 and 0.37, respectively. (ii) Our method
achieves varying degrees of improvement across the range
p ∈ [0, 1]. When p > 0.5, sampling occurs more frequently
over the overall timestep, while for p < 0.3, sampling
is more concentrated in a specific timestep range. Both
cases restrict knowledge transfer between the overall and
specific timestep ranges, leading to minor FID improve-
ments, shown in Fig. 2. To maximize the effectiveness of
the method, we recommend using p = 0.3 or p = 0.4 in
practice.

8. Additional Qualitative Experiments
8.1. Additional Qualitative Results on LSUN for

DDPM

In Fig. 3, Fig. 4 and Fig. 5, generated images of LSUN are
presented. DeMe has more effectively captured the under-
lying patterns in the images, specifically the church and
bedroom scenes, allowing for more detailed and accurate
generation of these structures. While diffusion before fine-

tuning fails to generate churches or bedrooms, diffusion af-
ter finetuning successfully generates them with finer details.
The finetuned diffusion demonstrates an improved ability to
generate coherent and realistic representations of the target
objects, as evidenced by the success in producing church-
style buildings and bedroom-style interiors.

8.2. Additional qualitative Results for Stable Diffu-
sion

In Fig. 6, Fig. 7 and Fig. 8, additional qualitative results are
presented based on various detailed text prompts. DeMe
more effectively generates images that align with the
provided text descriptions, producing results that are both
more detailed and photorealistic. The finetuned Stable Dif-
fusion model demonstrates an improved ability to gener-
ate visually coherent and contextually accurate images that
closely match the nuances of the prompts, as highlighted
in the comparison between before- and after-finetuning re-
sults, showcasing its enhanced capacity for text-to-image
synthesis.
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Figure 3. Qualitative comparison between our method and original DDPM on LSUN.
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successfully generated, whereas the top row fails to produce coherent structures.

Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Ko-
rnblith, et al. Model soups: averaging weights of multiple
fine-tuned models improves accuracy without increasing in-
ference time. In International conference on machine learn-
ing, pages 23965–23998. PMLR, 2022. 3

[17] Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raf-
fel, and Mohit Bansal. Ties-merging: Resolving interference
when merging models. Advances in Neural Information Pro-
cessing Systems, 36, 2024. 3

[18] Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xi-
aochun Cao, Jie Zhang, and Dacheng Tao. Model merging
in llms, mllms, and beyond: Methods, theories, applications
and opportunities. arXiv preprint arXiv:2408.07666, 2024.
3

[19] Xingyi Yang, Daquan Zhou, Jiashi Feng, and Xinchao Wang.
Diffusion probabilistic model made slim. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 22552–22562, 2023. 3

[20] Huijie Zhang, Yifu Lu, Ismail Alkhouri, Saiprasad Rav-
ishankar, Dogyoon Song, and Qing Qu. Improving ef-
ficiency of diffusion models via multi-stage framework
and tailored multi-decoder architectures. arXiv preprint
arXiv:2312.09181, 2023. 3



Prompt Ⅴ: “A tranquil beach at sunrise, with soft waves lapping 

at the shore, palm trees swaying gently in the breeze, and a 

vibrant sky painted in shades of pink, orange, and purple.” 

Before Finetuning: Loss of text-image alignment: palm trees swaying gently 

After Finetuning: Superb text-image alignment, gorgeous coastal view 

Prompt Ⅵ: “A vast desert with rolling sand dunes, the golden 

sands stretching endlessly under a cloudless sky, a caravan of 

camels making its way across the horizon.” 

Before Finetuning: Loss of text-image alignment: a caravan of camels 

After Finetune: Superb text-image alignment

Prompt Ⅶ: “A herd of wild horses galloping across a wide 

open field, their manes and tails flowing in the wind, dust 

kicking up beneath their hooves as they run.” 

Before Finetuning: Loss of text-image alignment: dust kicking up.. 
After Finetuning: Superb text-image alignment, vivid graphic depiction

Prompt Ⅷ: “A scientist in a modern laboratory, wearing a 

white coat and safety goggles, examining a vial of glowing blue 

liquid with curiosity and focus.” 

Before Finetuning: Loss details in scientist’s body
After Finetuning: Detailed generation in scientist’s body

Before Finetuning After Finetuning Before Finetuning After Finetuning

Figure 6. Additional qualitative results based on various text prompts for Stable Diffusion

Prompt Ⅸ: “A majestic eagle soaring high above the 

mountains, its wings spread wide, gliding effortlessly through 

the sky with the distant peaks below.” 

Before Finetuning: Loss of realistic graphic depiction
After Finetuning: Superb text-image alignment, lifelike figure

Prompt Ⅹ: “An old fisherman with weathered hands, sitting on a 

wooden dock by the sea, seagulls fly overhead in the golden light 

of sunset.” 

Before Finetuning: Loss of text-image alignment: seagulls fly overhead 

After Finetuning: Superb text-image alignment

Prompt ⅩⅠ: “A dense, mystical forest in autumn, with rays of 

golden sunlight filtering through the vibrant orange and red 

leaves, a narrow path leading deeper into the trees.” 

Before Finetuning: Loss of text-image alignment: sunlight filtering through.. 
After Finetuning: Superb text-image alignment, photorealistic

Prompt ⅩⅡ: “A snowy winter landscape, a small village nestled 

in a valley, smoke rising from chimneys, snow-covered trees, and 

twinkling lights glowing warmly in the dusk.” 

Before Finetuning : Loss of text-image alignment: smoke .. chimneys

After Finetuning: Superb text-image alignment 

Before Finetuning After Finetuning Before Finetuning After Finetuning

Figure 7. Additional qualitative results based on various text prompts for Stable Diffusion



Prompt ⅩⅢ: “A breathtaking view of a waterfall cascading 

down into a lush jungle, with vibrant green foliage, moss-

covered rocks, and a rainbow forming in the mist.” 

Before Finetuning: Loss of text-image alignment: a rainbow 

After Finetuning: Superb text-image alignment 

Prompt ⅩⅣ: “A grand library with towering bookshelves filled 

with ancient tomes, a spiral staircase winding up to a high ceiling 

adorned with intricate frescoes, and soft light streaming through 

stained glass windows.” 
Before Finetuning: Loss details: twisted staircase
After Finetuning: Excellent details generation

Prompt ⅩⅤ: “A majestic lion standing proudly on a rocky 

ledge, its golden mane blowing in the wind, the vast African 

savannah stretching out behind it at sunset.” 

Before Finetuning: Loss of text-image alignment: standing proudly.. 
After Finetuning: Superb text-image alignment 

Prompt ⅩⅥ: “A curious red fox sitting in a snowy forest, its 

bright fur contrasting against the white snow, its ears perked up 

and eyes focused on something in the distance.” 

Before Finetuning : Loss of text-image alignment: sitting

After Finetuning: Superb text-image alignment 

Before Finetuning After Finetuning Before Finetuning After Finetuning

Figure 8. Additional qualitative results based on various text prompts for Stable Diffusion
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