
Diffusion Model is Effectively Its Own Teacher

Supplementary Material

A. Experimental Details
A.1. Conditional Generation
We first show the pseudo-code for SSD and iSSD in Al-
gorithm 1 and Algorithm 2. The ODE Solver (·) is pre-
defined with T sampling steps. In our experiments, we all
use DDIM [50] as the basic ODE sampler. We use notation
T and S to represent the teacher and the student model, and
t and s to represent two timesteps.

Experiments for DiT-XL/2 For experiments on DiT-
XL/2, we use the officially released checkpoints from
Github1. The learning rate for the experiments on DiT-XL/2
for both the 256 and 512 resolutions is set to 5e-6. The
training batch size for the 512 resolution is 64 and for the
256 resolution is 128. The experiments are conducted on 8
A6000s and we train the model with epochs shown in Table
2. We didn’t use weight decay and learning rate scheduler
in our experiments, following the original implementation
of DiT. We set wt = 1 for all steps since we found no sig-
nificant influence on the image quality if we use different
wt.

We adopt the classifier-free guidance in all the experi-
ments, and we use the same CFG scale, which is 1.5, as
in the paper of DiT. For training, we randomly drop the la-
bel and set it to the null one with a 10% probability. The
sampling process is identical to the original computation
pipeline of DiT, and no fusion is used in sampling.

Experiments for DiT-S, DiT-B, DiT-L For experiments
on other DiT models, we first train the DiT model from

1https://github.com/facebookresearch/DiT

Model NFEs � Model NFEs �

Pre-trained Diffusion Model

DiT-XL/2 - 256⇥256
50 0.30

DiT-XL/2 - 512⇥512
50 0.30

20 0.25 20 0.25
10 0.25 10 0.25

DiT-L/2 - 256⇥256
50 0.25

DiT-B/2 - 256⇥256
50 0.35

20 0.25 20 0.25
10 0.25 10 0.25

DiT-S/2 - 256⇥256
50 0.05

/ / /20 0.10
10 0.05

Distilled Diffusion Model

64 ! 32 32 0.20 20 ! 10 10 0.25
20 ! 10 ! 5 5 0.05 16 ! 8 ! 4 4 0.05

Table 9. Choice of � in experiments for iSSD

Algorithm 1 Train - SSD

1: Input: qdata(x), Model ✓, T -step ODE solver (·), timestep
scheduler {⌘i}Ti=1 in (·)

2: ✓T ✓, ✓S ✓
3: repeat
4: x0 ⇠ qdata(x), n ⇠ U [1, T]

// Teacher: Step s
5: s ⌘n
6: xs ⇠ N

�
xs;↵sx0,�

2
sI
�

7: ✏s ✏✓T (xs, s)
// Teacher: Step t

8: t ⌘n+1

9: xt (✏s, s, t)
10: ✏t ✏✓T (xt, t)

// Student: Step s
11: ✏S (xt, xs, t, s) ✏✓S (xs, s)

// Train
12: Calculate ✏T (xt, xs, t, s) with ✏t and ✏s by Eq.5
13: L ||✏T (xt, xs, t, s)� ✏S (xt, xs, t, s) ||22
14: Optimize ✓S with L
15: until converged

Algorithm 2 Train - iSSD

1: Input: qdata(x), Model ✓, T -step ODE solver (·), timestep
scheduler {⌘i}Ti=1 in (·)

2: ✓T ✓, ✓S ✓
3: repeat
4: x0 ⇠ qdata(x), n ⇠ U [1, T]

// Student: Step s
5: s ⌘n
6: xs ⇠ N

�
xs;↵sx0,�

2
sI
�

7: ✏s ✏✓T (xs, s)

8: Store
n
f✓Sl

⇣
x(l)
s , s

⌘oL

l=1
and stop the gradient here.

// Student: Step t
9: t ⌘n+1

10: xt (✏s, s, t)

11: ✏S (xt, xs, t, s) ✏✓S (xt, t) with
n
f✓Sl

⇣
x(l)
s , s

⌘oL

l=1
using Eq.6
// Teacher: Step t

12: ✏T (xt, xs, t, s) ✏✓T (xt, t)
// Train

13: L ||✏T (xt, xs, t, s)� ✏S (xt, xs, t, s) ||22
14: Optimize ✓S with L
15: until converged

scratch. All the implementations follow the original one
of DiT, and we train DiT-S, DiT-B and DiT-L for 2M, 1M,
1M steps respectively. We tested iSSD on these three mod-

Model NFEs � Model NFEs �

Pre-trained Diffusion Model

DiT-XL/2 - 256⇥256
50 0.30

DiT-XL/2 - 512⇥512
50 0.30

20 0.30 20 0.30
10 0.30 10 0.30

Table 10. Choice of � in experiments for SSD

els, with the learning rate set to 1e-5, 5e-6, and 5e-6 re-
spectively. The batch size for these three models are 512,
256 and 256, and the experiments are conducted upon 8
RTX4090s.

Choice of Hyper-parameter � As we mentioned previ-
ously, � influences the performance of the method signifi-
cantly. Here we show the � that was used to reproduce all
the results in the paper in Table 9 and Table 10.

A.2. Text-to-Image Generation
For text-to-image generation, we use stable diffusion v1.52

as the base model. These experimente also show the ver-
satility of our method on a different backbone for diffusion
models.

We use the explicit SSD upon Stable Diffusion v1.5. The
training process is the same as the one in DiT, except for the
special mechanism for classifier-free guidance. Here, for
timestep s and timestep t, we would perform the inference
upon both the conditional prompt embedding and the un-
conditional embedding, and the SSD would be performed
separately for both the conditional and unconditional pre-
dictions. To get the input at timestep t, we run the ODE
solver (DDIM) and apply the CFG with a random CFG
scale from 5 to 15. We use the Adam optimizer with a
learning rate equal to 1e-6. We train it for 4k steps, and
the batch size is set to 96. We use the subset of Concep-
tual 12M with 384K samples 3 as the training dataset and
train it for 1 epoch. The � we use in this experiment is 0.3.
Also, we use the DDIM as the basic ODE solver in training
and sampling, and we use the default CFG scale in stable
diffusion v1.5, which is 7.5.

A.3. Experiments for REPA in Table 1
For the experiment for REPA in Table 1, we build our code
upon the official implementation4. For experiments on 10
steps, we used the fixed pre-trained model as the teacher,
while we found this one didn’t work on experiments with
250 steps. The teacher needs to be set to the ema one and
the learning rate is set to 5e-6. We set the time interval
between the two steps to 0.005 and disabled the projection

2https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
3https://github.com/google-research-datasets/conceptual-12m
4https://github.com/sihyun-yu/REPA

loss in training. The sampling process is identical to that
used in REPA.

B. Derivation
B.1. Velocity Prediction with the Linear Interpolant

Noise Scheduler
As mentioned in Section 3.4, the goal is to get the prediction
at timestep u while the only things we know are the predic-
tions at timestep s and timestep t. We rescale the timestep
from [0, T] to [0, 1], making it consistent with the formu-
lation in flow-based diffusion models [7, 60]. Suppose the
current diffusion process can be formulated as:

xt = ↵tx0 + �t✏

where ↵0 = �1 = 0 and ↵1 = �0 = 1 (13)

Here, we set ↵t+�t = 1 and use a simple linear interpolant
in the noise scheduler. Based on this, we have:

xt = (1� t/T)x0 + (t/T)✏ (14)

The velocity is predicted by model v✓(xt, t/T) and its train-
ing objective becomes:

min
✓

Et⇠[1,T],x0⇠qdata(x)

h
kv✓(xt, t/T) + (1/T)x0 � (1/T)✏)k2

i

(15)
If the training has been effective, the learned velocity field
would not vary significantly when moving from one time
step t to another nearby step u since they have the same
objective, which implies that:

v̂✓ (xt, t/T) ⇡ v̂✓ (xu, u/T) ⇡ �(1/T)x0 + (1/T)✏
(16)

where v̂✓ (xt, t/T) represents the model for sufficiently
large training epochs, which is pre-trained on the dataset
and in our experiment, we use REPA. Thus, based on the
above, we can derive the training objective for applying the
SSD in this scenario, and we have:

min
✓

Es⇠[1,T],x0⇠qdata(x)

h
kv✓ (xs, s/T)� v✓ (xt, t/T)k

2
i

(17)
where we also set the weighting term wt to 1 for all
timesteps. Here we set t/T = s/T � 0.005 for the experi-
ment for 250 steps and t/T = s/T �0.1 for the experiment
on 10 steps.

We also tested the assumption above that the model
needs to be sufficiently trained. Thus, we trained REPA
from scratch with the additional loss in Eq.17, and we found
severe performance degradation in the model performance.
See Figure 5 for the qualitative results.

Figure 5. Train REPA for 10k steps. Left: Pre-trained Baseline.
Right: Add Eq.17 in pre-training

B.2. Interpolation in Eq.11
In this section, we show how we get Eq.11 in detail. Fol-
lowing the Proof B.8 in [34], we make the assumption that
✏✓(xs, s) is Lipschitz w.r.t xs, and we have:

||✏✓(xu, u)� ✏✓(xs, s)|| = O(||xu � xs||) = O
�
(�u � �s)

2
�

(18)
Approximating ✏✓(xu, u) with Taylor expansion, we have:

✏✓ (xu, u) = ✏✓ (xs, u) + (✏✓ (xu, u)� ✏✓ (xs, u))

= ✏✓ (xs, s) + ✏(1)✓ (xs, s) (u� s) +O

⇣
(�u � �s)

2
⌘

(19)
here, ✏(1)✓ (xs, s) (u � s) is the first-order derivative of
✏✓(xs, s) w.r.t the second parameter s. Also, if we apply
Eq.19 between timestep s and t, we have

✏✓ (xt, t) = ✏✓ (xs, s) + ✏(1)✓ (xs, s) (t� s) +O

⇣
(�t � �s)

2
⌘

(20)
We substitute ✏(1)✓ (xs, s) in Eq.19 by the results in Eq.20:

✏✓ (xu, u) = ✏✓ (xs, s) + (✏✓ (xt, t)� ✏✓ (xs, s))
u� s

t� s
+O

⇣
(�u � �s)

2
⌘

=

✓
1�

u� s

t� s

◆
✏✓ (xs, s) +

u� s

t� s
✏✓ (xt, t) +O

⇣
(�u � �s)

2
⌘

With � set to (u� s) / (t� s), we get the equation in the
method, which is termed as SSD.

C. Visualization
We show the images generated by our method and compare
it with the one without self-distillation in Figure 6, 7 and 8.

Figure 6. Results on ImageNet 256⇥256 with 10 DDIM Steps.
The above row is the original generation results by DDIM and the
below row is the one trained by iSSD

Figure 7. Results on ImageNet 512⇥512 with 10 DDIM Steps. The above row is the original generation results by DDIM and the below
row is the one trained by iSSD

Figure 8. Results on Stable Diffusion v1.5 with 512 resolution. The above row is the original generation results by DDIM and the below
row is the one trained by SSD, also with 10 DDIM steps.

	Introduction
	Related Work
	Method
	Preliminary
	Overall Framework
	Distill from High-Order Solver
	Ways to approximate bold0mu mumu subsection(xu, u)

	Experiment
	Experimental Setup
	Conditional Generation
	Text-to-Image Generation
	Results on Distilled Models
	Analysis

	Conclusion
	Experimental Details
	Conditional Generation
	Text-to-Image Generation
	Experiments for REPA in Table 1

	Derivation
	Velocity Prediction with the Linear Interpolant Noise Scheduler
	Interpolation in Eq.11

	Visualization

