A. Related Work
Federated Learning with Data Heterogeneity

In federated learning, client data often originates from dif-
ferent distributions, typically manifesting as label skew and
domain skew. With label skew, the class distributions across
clients are significantly imbalanced, while domain skew oc-
curs when feature distributions for the same class vary due
to differences in data sources. To address these issues, re-
searchers have proposed methods that can be grouped into
client regularization, server-side dynamic aggregation, and
federated data augmentation [13].

Client regularization primarily focuses on adjusting lo-
cal optimization objectives so that local models align more
closely with the direction of the global model, reducing
distributional shifts across clients [18, 22, 26, 31, 40, 41,

, 50, 58, 60, 65]. Methods such as FedProx [29] and
SCAFFOLD [16] introduce additional regularization terms
to minimize the discrepancy between local and global mod-
els, thereby improving convergence speed and accuracy.
MOON [25] leverages contrastive learning to align feature
spaces across clients, addressing both label and domain
skew. FPL [12] supervises the learning of local class pro-
totypes by aggregating and sharing class prototypes across
clients. However, involving a global model in the local opti-
mization process deeply enlarges the local computation cost
and linearly increases with the parameter scale.

Server-side dynamic aggregation methods optimize the
global model by adaptively adjusting client weights [4, 10,

]. FedOPT [48] and Elastic [3] use dynamic aggrega-
tion weights based on client model updates, enhancing the
global model’s generalization in heterogeneous data set-
tings. Additionally, methods like FedDF [34] and FCCL
[11] incorporate knowledge distillation modules on the
server side, combined with auxiliary datasets to improve
the adaptability of aggregation, making these approaches
suitable for broader cross-client data distributions. How-
ever, these methods often require additional proxy datasets
to support model adjustments, which is beneficial in scenar-
ios with significant distributional differences across clients.

Federated data augmentation aim to bridge the gap be-
tween local data distributions and the ideal global distri-
bution by generating more diverse data samples on clients
[9, 37, 51]. For example, FedMix [63] and FEDGEN [68]
use MixUp and its variants to augment client data, thus mit-
igating label skew. However, due to the lack of knowledge-
based guidance, these methods largely rely on the diver-
sity of local data. FedFA [67] assumes local data follows
a Gaussian distribution and generates new samples centered
on class prototypes. Nevertheless, the Gaussian assump-
tion is overly idealistic [38], limiting the ability of gener-
ated samples to adequately reduce the discrepancy between
local and global distributions. Compared to the Gaussian

assumption, the geometric shapes proposed in this work
provide a more accurate description of embedding distribu-
tions. GGEUR estimates the geometric shape of the global
distribution without compromising privacy and leverages it
to guide data augmentation on clients.

B. Dataset

Label Skew Datasets. We evaluate our method on three

single-domain image classification tasks.

* Cifar-10 [20] contains 10 classes, with 50,000 images
for training and 10, 000 images for validation.

 Cifar-100 [20] covers 100 classes, with 50, 000 training
images and 10, 000 validation images.

* Tiny-ImageNet [0] is the subset of ImageNet with 100K
images of size 64 x 64 with 200 classes scale.

Consistent with recent benchmarks [13], we set up 10
clients for each task. To simulate label skew across clients,
we use a Dirichlet distribution, Dir(/3), where the param-
eter > 0 controls the degree of label skew (i.e., class
imbalance). When § takes a smaller value, the local dis-
tributions generated on each client become more skewed,
showing greater divergence from the overall distribution.

Domain Skew Datasets. We evaluated our method on the

multi-domain image classification dataset Digits and con-

ducted analyses on Office-Caltech and PACS.

* Digits [14, 21, 43, 49] includes four domains: MNIST,
USPS, SVHN and SYN, each with 10 categories.

e Office-Caltech [8] includes four domains: Caltech, Ama-
zon, Webcam, and DSLR, each with 10 categories.

e PACS [24] includes four domains: Photo (P) with 1,670
images, Art Painting (AP) with 2,048 images, Cartoon
(Ct) with 2,344 images and Sketch (Sk) with 3,929 im-
ages. Each domain holds seven categories.

Consistent with recent benchmarks, in domain skew exper-

iments, each domain is assigned to a separate client, with

each client focusing on data from a specific domain. For

Digits, each client is allocated 10% of the data from its re-

spective domain. For Office-Caltech and PACS, each client

is allocated 30% of the data from its corresponding domain.

Dataset with Coexisting Label Skew and Domain Skew.

Office-Home [50] includes 4 domains: Art (A), Clipart (C),

Product (P), and Real World (R), each containing 65 classes.

To increase the challenge, we designed a new partitioning

method for the multi-domain dataset Office-Home to create

a scenario where label skew and domain skew coexist.

In the Office-Home dataset, while ensuring that each
client corresponds to a single domain, we first generate a
Dirichlet coefficient matrix, where the degree of class im-
balance is controlled by 8. For the 65-class, 4-domain
Office-Home task, we generate a 4 x 65 matrix controlled by
[ (with each column summing to 1). The four coefficients
for each class are then allocated to the four clients, and each
client uses its assigned coefficients to determine the number
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Figure 9. Number of samples per class across four clients when 3 equals 0.1, 0.3, 0.5, 0.7, 1, and 5, with each client holding data from a

different domain.

Table 8. Experiments Configuration of different federated scenar-
ios. Image size is operated after the resize operation. |C| denotes
the classification scale. |K| denotes the clients number. F is the
communication epochs for federation. B is the training batch size.

Scenario Size||C|| Network w |Rater||K| E B
Label Skew Setting § 5.2

Cifar-10 22410 |CLIP (ViT-B/16)
Cifar-100 224 |100|CLIP (ViT-B/16)
Tiny-ImageNet| 224 [200/CLIP (ViT-B/16)

Domain Skew § 5.3 and 5.4

le-2 | 1010064
le-1 | 1010064
le-2 | 10(10064

Digits 224\ 10 |CLIP (ViT-B/16)| 1e-2 | 4 |50 16
Office Caltech (22410 |CLIP (ViT-B/16)| 1e-3 | 4 |50 16
PACS 224| 7 |CLIP (ViT-B/16)| 1e-3 | 4 |50 16
Office-Home (22465 |CLIP (ViT-B/16)| 1e-3 | 4 |50 16

of samples for that class. This setup results in a distribution
that incorporates both domain shift (one domain per client)
and Dirichlet-based class imbalance, presenting a scenario
where the model faces both class distribution and domain
differences, creating a more realistic, challenging, and di-
verse distribution for classification. We name the newly
constructed dataset Office-Home-LDS (Label and Do-
main Skew). Figure 9 shows the data distribution of Office-
Home-LDS with different S values. Dataset and Con-
structor published at: https://huggingface.co/
datasets/WeiDai-David/Office—-Home—-LDS.

Table 9. Hyper-parameters chosen for different methods. Hyper-
parameters in different methodologies may share the same nota-
tion but represent distinct meanings.

Methods | Hyper-Parameter | Parameter value
SCAFFOLD | Global learning rate Ir | 0.25

Contrastive temp 7 0.5
MOON Proximal weight p 1.0
FedDyn ‘ Proximal weight « ‘ 0.5
FedOPT | Global learning rate 7, | 0.5
FedProto | Proximal weight A | 2

Distill temp 7 1
FedNTD Reg weight 5 1

C. Implementation Details

As for the uniform comparison evaluation, we follow [13]
and conduct the local updating round U = 10. We use the
SGD optimizer for all local updating optimization. The cor-
responding weight decay is 1 x 10~® and momentum is 0.9.
The learning rate 17 and communication epoch E are differ-
ent in various scenarios, as shown in Table 8. Notably, the
communication epoch is set according to when all federated
approaches have little or no accuracy gain with more com-
munication epochs. The local training batch size is B = 64.
Furthermore, the Table 9 plots the chosen hyper-parameter
for different methods.


https://huggingface.co/datasets/WeiDai-David/Office-Home-LDS
https://huggingface.co/datasets/WeiDai-David/Office-Home-LDS

D. Privacy Constraints

In our approach, the server only sends the eigenvectors and
eigenvalues of the global covariance matrix back to clients,
without sharing raw data or local covariance matrices. We
demonstrate below that this information is insufficient for
reconstructing any client’s original data.

(1) Eigenvectors and Eigenvalues Do Not Contain
Raw Data. The eigendecomposition provides only the ge-
ometric structure of the data distribution, without encoding
individual sample details. Even if a client obtains eigenvec-
tors and eigenvalues, reconstructing the original data is an
ill-posed problem, as it admits infinitely many solutions.

(2) Low-Rank Property Prevents Data Reconstruc-
tion. The covariance matrix is typically low-rank, mean-
ing: rank(X;) < d, where d is the original data dimension.
This implies that even with full knowledge of eigenvectors
and eigenvalues, clients can only access principal directions
of the data and not its full details.

(3) Aggregation Prevents Isolation of Individual
Client Contributions. The global covariance matrix is an
aggregate of all clients’ local covariance matrices: Y; =
Sy RS+ Sy R (g, — ) (1, — )T Since each
client’s contribution is mixed through weighted averaging:
I. No single client can isolate another client’s contribu-
tion from Geometric Knowledge. II. Even if a client’s data
is removed, the impact on X; is distributed across all eigen-
vectors, making individual influences indistinguishable.

(4) Existing Literature Supports the Privacy of Co-
variance Matrices. Prior works confirm that sharing
higher-order statistics (covariance matrices) poses lower
privacy risks than sharing model gradients (Melis et al.).

E. Large-Scale Client

In practical federated learning settings, the number of par-
ticipating clients can significantly affect model performance
due to increased data heterogeneity. To further evaluate
the performance of our proposed method under larger-scale
federated learning scenarios, we conducted additional ex-
periments with an increased number of clients. Specifically,
we conducted experiments on the label-skewed dataset
CIFAR-10 with 100, 300, and 500 clients. As shown in
Table 10, the results demonstrate that GGEUR remains ro-
bust and continues to enhance the performance of FedAvg
(CLIP+MLP).

Table 10. Number of Clients K Impact on Performance.

CIFAR-10 (3 = 0.1)
Methods|| ;- — 1900 K =300 K =500
FedAvg (CLIPTMLP)|[ _ 87.89 84.69 82.05

+ GGEUR||93.55 (+5.66) 92.17 (+7.84) 90.43 (+8.38)

Algorithm 2 GGEUR (Multi-Domain Scenario)

Require: X; =[xV . xU")] ¢ Rexni
Sample set of class ¢ at client k, GD; =
{eh, ... &8 AL ..., 0P} Shared geometric shape
(eigenvectors and eigenvalues) of class 7, {1}, }: Proto-
types (means) of class ¢ from other domains, N: Num-
ber of new samples to generate per original sample in
Step 1, M: Number of samples to generate per proto-

type in Step 2.
Ensure: X! : Augmented sample set of class ¢ at client k
Xk, «0 > Initialize augmented sample set

> Step 1: Local Domain Augmentation
2: for j = 1ton} do
3 Xi, + Xi,UGGEUR(X("" GD; N)
end for

»

> Step 2: Cross-Domain Simulation
for each prototype p%, from other domains do
Xl < Xl UGGEUR(pi,,GD;, M)
end for

i
return X

® W

F. Computational Cost

We conducted experiments on the domain-skewed dataset
Digits, comparing the training time required to complete
the full model for FedAvg (CLIP+MLP), SCAFFOLD
(CLIP+MLP), and MOON (CLIP+MLP) before and after
applying GGEUR. The results (Tab11) show that GGEUR
introduces almost no additional training time overhead.
Specifically, after applying GGEUR, the training time for
the three methods increased by only 3.5s, 4.6s, and 3.3s,

respectively.
Table 11. The average training time (s) per round.
Dagits
Methods FedAve  SCAFFOLD  MOON
CLIP+MLP 28.2 54.5 323
+ GGEUR 31.7 (+3.5) 59.1 (+4.6) 35.6 (+3.3)
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