
Supplementary Material on
SURGEON: Memory-Adaptive Fully Test-Time Adaptation via Dynamic

Activation Sparsity

Ke Ma1,2 Jiaqi Tang3 Bin Guo1* Fan Dang4 Sicong Liu1 Zhui Zhu2

Lei Wu1 Cheng Fang1 Ying-Cong Chen3 Zhiwen Yu1,5 Yunhao Liu2*

1Northwestern Polytechnical University 2Tsinghua University
3The Hong Kong University of Science and Technology

4Beijing Jiaotong University 5Harbin Engineering University

Project Page: https://github.com/kadmkbl/SURGEON

Abstract

In the supplementary material, we first provide addi-
tional experiments to intuitively illustrate the issue of adap-
tation memory cost. We then introduce the foundation of our
method, activation sparsity, and examine its impact across
different network architectures used in the main paper’s ex-
periments. Next, we analyze the factors contributing to
SURGEON’s superior accuracy. Additionally, we provide
details on the datasets and implementation of both SUR-
GEON and the baselines. Furthermore, we present addi-
tional comparisons with backward-free methods. Finally,
we discuss the limitations of our work and outline potential
future directions.

1. Excessive Memory Cost of Adaptation on
IoT Terminals

To illustrate the memory cost issue of adaptation more
intuitively, we implement experiments on three convolu-
tional networks used in SURGEON. Specifically, we train
WideResNet-28 [27] and ResNeXt-29 [26] on the CIFAR-
10 and CIFAR-100 datasets [14], respectively, with a batch
size of 64. Additionally, DeeplabV3+ [2] with ResNet-
50 [7] is trained on Cityscapes [4], with a batch size of 2.

From Figure 1, we can observe the following: (i) The
memory usage induced by adaptation easily exceeds the
memory budgets of current mainstream IoT terminals, such
as the Raspberry Pi 3B+1 and Jetson XAVIER NX2. (ii)
Among the components contributing to adaptation memory

*Corresponding authors. guob@nwpu.edu.cn, yunhao@tsing
hua.edu.cn

1https://www.raspberrypi.com/products/
2https : / / www . nvidia . com / en - us / autonomous -

machines/

R
aspberry Pi 3 B+

Jetson XAVIER
 N

X

≈ 96.7%

≈ 97.1%

≈ 81.0%

Figure 1. Memory cost of different networks. Memory us-
age in “Activations” is significantly higher than other components
(“Weights” and “Gradients”) during adaptation.

usage, activations constitute the majority, accounting for
81.0%, 97.1%, and 96.7% of the total memory usage, re-
spectively. This finding supports the point we make in § 3.2
Optimization Objective of the main paper and serves as one
of the motivations for our method. Our method directly and
flexibly prunes activations at layer-specific dynamic ratios
to achieve the optimal balance between minimizing mem-
ory cost and maximizing accuracy during FTTA.

2. Activation Sparsity across Various Architec-
tures

In this section, we will discuss the network architectures
used in the experiments of the main paper and explain the
impact of applying activation sparsity across these different
types of architectures during adaptation.

In the experiments, we utilize different convolution-



based networks and one transformer-based network. To
clarify how activation sparsity affects weight updates by al-
tering weight gradient calculations during adaptation, we
provide a detailed explanation of the weight gradient cal-
culation process for the trainable layers. Let x denote the
input features and z the output features.

2.1. Convolutional Layers
• Forward Propagation:

zm,n,k =
P∑

p=1

Q∑
q=1

C∑
c=1

Wp,q,c,k · xm+p−1,n+q−1,c + bk,

(1)
where W denotes the convolutional filter, b represents the
bias, P and Q are the height and width of the filter, C is
the number of input channels, m and n are spatial indices,
and k indicates the output channel index.

• Backward Propagation:

δp,q,c,kW =
M∑

m=1

N∑
n=1

δm,n,k
z · xm+p−1,n+q−1,c,

δkb =
M∑

m=1

N∑
n=1

δm,n,k
z ,

(2)

where δm,n,k
z is the gradient of the output z, δp,q,c,kW rep-

resents the gradient of the convolutional filter’s weights,
and δkb is the gradient of the convolutional filter’s bias.

2.2. Fully Connected Layers
• Forward Propagation:

zk =
J∑

j=1

Wjkxj + bk, (3)

where W is the weight matrix, b is the bias vector, J is
the input dimension, and k is the output element index.

• Backward Propagation:

δjkW = δkz · xj , δkb = δkz , (4)

where δkz is the gradient of the output z, δjkW represents
the weight gradient, and δkb represents the bias gradient.

2.3. Batch Normalization Layers
• Forward Propagation:

µ =
1

N

N∑
n=1

xn, σ2 =
1

N

N∑
n=1

(xn − µ)
2
,

x̂n =
xn − µ√
σ2 + ϵ

, zn = γx̂n + β,

(5)

where γ and β are the learnable scale and shift param-
eters, N is the batch size, and ϵ is a small constant for
numerical stability.

• Backward Propagation:

δγ =
N∑

n=1

δnz · x̂n, δβ =
N∑

n=1

δnz , (6)

where δnz is the gradient of the output z, δγ denotes the
gradient of the scale parameters, and δβ denotes the gra-
dient of the shift parameters.

2.4. Layer Normalization Layers
• Forward Propagation:

µ =
1

D

D∑
d=1

xd, σ2 =
1

D

D∑
d=1

(xd − µ)
2
,

x̂d =
xd − µ√
σ2 + ϵ

, zd = γx̂d + β,

(7)

where γ and β are the learnable scale and shift parame-
ters, D is the feature dimension, and ϵ is a small constant
for numerical stability.

• Backward Propagation:

δγ =
D∑

d=1

δdz · x̂d, δβ =
D∑

d=1

δdz (8)

where δdz is the gradient of the output z, δγ denotes the
gradient of the scale parameters, and δβ denotes the gra-
dient of the shift parameters.
From the above equations, it is evident that pruning the

input x of a given layer results in the corresponding weight
gradient (δp,q,c,kW of convolutional layers, δjkW of fully con-
nected layers, δγ of BN and LN layers) becoming more
sparse. Therefore, applying different activation sparsity ra-
tios to a layer during adaptation not only flexibly optimizes
its memory cost but also modulates the magnitude of weight
updates, thereby adjusting the learning ability of that layer.

3. Why Accuracy Gets Higher via Dynamic Ac-
tivation Sparsity?

Here, we analyze why layer-specific dynamic activation
sparsity leads to improved adaptation accuracy. Table 1
presents the TTA results on WideResNet-28 and CIFAR10-
C using various updating strategies.

From the table, we can observe that (i) updating spe-
cific layers while freezing others during adaptation yields
varying accuracy, and (ii) some subset updating strategies
(e.g., updating “Conv1+Block1” or “Block2”) even surpass
the accuracy achieved by updating all layers (“All”). These
results demonstrate that (i) different layers contribute un-
equally to accuracy during adaptation, and (ii) limiting up-
dates in less critical layers may reduce error accumulation,
thereby enhancing TTA accuracy gains.



Table 1. Mean online error (%) for TTA with different updating
strategies. The experiments are implemented using WideResNet-
28 and CIFAR10-C, with 1e-5 as the learning rate and 200 as the
batch size.

Updating
Layers

Conv1+
Block1 Block2 Block3 FC All Ours

Mean (%) 18.8 18.7 20.2 20.4 18.9 18.1

Motivated by the above, SURGEON allocates layer-
specific activation sparsity ratios in a data-sensitive man-
ner during adaptation. These sparsity ratios are determined
based on layer importance metrics: Gradient Importance
(G) and Layer Activation Memory (M ), which respectively
reflect the accuracy contributions and memory efficiency
of different layers. By doing so, SURGEON automatically
encourages adaptation in layers with higher accuracy con-
tributions while suppressing adaptation in less critical lay-
ers. This ultimately mitigates error accumulation, allowing
SURGEON to achieve higher accuracy.

4. Experimental Details

4.1. Details of Datasets
In the experiments, we employ two tasks: image classi-

fication and semantic segmentation. For the image classifi-
cation task, deep models are trained on the CIFAR [14] and
ImageNet [6], and test-time adaptation is implemented on
the CIFAR-C and ImageNet-C [8]. For the semantic seg-
mentation task, deep models are trained on the Cityscapes
dataset [4] and then adapted at test time on the ACDC
dataset [19].

• CIFAR10/100 [14] is an image classification dataset con-
taining 10/100 classification categories and 50,000 train-
ing samples.

• ImageNet [6] is an image classification dataset contain-
ing 1000 classification categories and approximately 1.2
million training samples.

• CIFAR10/100-C and ImageNet-C [8] are generated by
applying 15 types of different corruptions to the CI-
FAR/ImageNet dataset. It shares the same categories
as CIFAR/ImageNet. In TTA, we select corruptions at
the highest severity level (level 5), utilizing 10,000 un-
labeled images from each corruption. For the test se-
quence setup, we follow CoTTA [23], where the test se-
quence from 15 corruptions is repeated once sequentially
for CIFAR-C, and ten diverse corruption sequences are
used for ImageNet-C. The input size is 32 × 32.

• Cityscapes [4] is a real-world semantic segmentation
dataset consisting of images collected from daytime en-
vironments. It contains 19 categories and includes 2,975
training samples.

• ACDC [19] is a real-world semantic segmentation dataset

comprising images collected from four different environ-
ments (i.e., rain, snow, fog, night). It shares the same
categories as Cityscapes, and 400 unlabeled images from
each environment are used for test-time adaptation. For
the test sequence setup, we follow CoTTA, where the se-
quence is established as Fog → Night → Rain → Snow
and repeated 10 times. The input size is 1920 × 1080 for
DeeplabV3+, following the setting in RobustNet [3], and
scaled to 960 × 540 for Segformer-B5, following the set-
ting in CoTTA [23].

4.2. Details of Methods

For fair comparisons, the pre-trained weights for the
network used in the experiments are all downloaded from
public resources. WideResNet-28 [27], ResNeXt-29 [26],
and ResNet-50 (AugMix) [7] are downloaded from Robust-
Bench [5], DeeplabV3+ [2] is downloaded from Robust-
Net repository3 [3], and Segformer-B5 [25] is downloaded
from CoTTA repository4 [23]. For each specific architec-
ture, both our method and the baselines utilized the same
pre-trained weights for initialization before TTA.

4.2.1. Details of SURGEON

The details of activation sparsity at the i-th layer can be
seen in Figure 3. During test-time adaptation, at layer i: (a)
In the forward pass, activations are pruned in an unstruc-
tured manner after calculating Ai+1, with elements set to
zero based on the layer-wise sparsity ratio. Elements are se-
lected according to their absolute values, with the smallest
ones being set to zero first [11]. The sparse activations are
then cached as: ① an index bitmap (1 bit per element via
BitArray package), and ② a dense vector of non-zero val-
ues. At floating-point inference, the sparse activation cache
size is n/32 + n(1− pi), where n is the original activation
size and pi is the layer’s sparsity ratio. (b) In the backward
pass, the sparse activations are reconstructed initially and
thus our method remains hardware-friendly as the sparse
activations maintain the original format, size and the stan-
dard process for gradient calculation.

In the experiments, our method has two versions: one
that updates all layers, SURGEON, and another that updates
only the BN layers, SURGEON (BN).

In the image classification experiments, the learning
rates used for the reported results can be found in Table 2.
For efficient evaluation of layer importance, we randomly
select 10 samples from a test batch during the calculation of
importance metrics.

In the semantic segmentation experiments, the learn-
ing rates are set to 1e-5 for DeeplabV3+ and 2e-7 for
Segformer-B5. For efficient evaluation of layer importance,

3https://github.com/shachoi/RobustNet
4https://github.com/qinenergy/cotta/issues/6



Table 2. The learning rates used for the reported results of SURGEON in the image classification task.

Architectures Methods Learning Rate Architectures Methods Learning Rate Architectures Methods Learning Rate

WideResNet-28

SURGEON 1.6e-5

ResNeXt-29

SURGEON 5e-6

ResNet-50

SURGEON 5e-6
+ CSS 2e-5 + CSS 1.2e-5 + CSS 1e-5
+ CSS & CR 2.2e-5 + CSS & CR 1e-5 + CSS & CR 5e-6
SURGEON (BN) 8e-4 SURGEON (BN) 1e-4 SURGEON (BN) 1.5e-4
+ CSS 8e-4 + CSS 3e-4 + CSS 5e-4
+ CSS & CR 1e-3 + CSS & CR 3e-4 + CSS & CR 2e-4

99 95 90 50 0
41

42

43

44

45

46

47

48

Activation Sparsity (%)

M
ea

n 
Er

ro
r (

%
)

99 95 90 50 0
54.0

54.2

54.4

54.6

54.8

55.0

55.2

55.4

55.6

55.8

Activation Sparsity (%)

M
ea

n 
Er

ro
r (

%
)

1 5 10 50 200
31.62

31.64

31.66

31.68

31.70

31.72

31.74

31.76

31.78

31.80

31.82

Numbers of Samples

M
ea

n 
Er

ro
r (

%
)

1 5 10 50 200

16.80

16.82

16.84

16.86

16.88

16.90

16.92

Numbers of Samples

M
ea

n 
Er

ro
r (

%
)

(a) WideResNet-28 (b) ResNeXt-29 (c) DeeplabV3+ (d) Segformer-B5

Figure 2. Different configurations for efficient layer importance evaluation in SURGEON and their impact on accuracy.

La
ye

r 
i𝑨𝒊 𝑨𝒊+𝟏

② dense vector

① bitmap
(0,1,0,0,1,1,1,0,0)

ሶ𝑨𝒊𝑨𝒊

Original

forward

Ours

𝑨𝒊

backward

𝑨𝒊

ሶ𝑨𝒊② dense vector

① bitmap
(0,1,0,0,1,1,1,0,0)

gradient calculation gradient calculation

write

read read

write

1 bit

set 0

after calculating 𝑨𝒊+𝟏 after calculating 𝑨𝒊+𝟏

Figure 3. Details of activation sparsity at the i-th layer.

a global static pruning ratio of 90% is applied to activations
during the calculation of importance metrics.

The Impact of Efficient Layer Importance Calculation
Configurations on Task Accuracy As illustrated in §
4.2 of the main paper, we employ two strategies for effi-
cient layer importance evaluation in the additional forward-
backward process. These strategies—randomly selecting
samples and applying a high global static pruning ra-
tio—ensure that the peak memory usage of the additional
forward-backward process does not exceed that of the sub-
sequent adaptation process. However, it remains unclear
whether these configurations impact accuracy. To investi-
gate this, we test different configurations for the additional
forward-backward process and observe their effects on ac-
curacy (i.e., Mean Online Error), as shown in Figure 2. For
image classification tasks (Figure 2 (a),(b)), we employ the
strategy of randomly selecting samples. The results show
that varying the number of selected samples has a minimal
impact on accuracy, with our configuration (10 samples), as
reported in the main paper, demonstrating stable and highly
similar accuracy compared to full evaluation (200 samples).

For semantic segmentation tasks (Figure 2 (c),(d)), which
have a small test batch size, we apply a high global static
pruning ratio. The results indicate that our configuration (90
%) also yields stable and comparable accuracy, in contrast
to full evaluation (0 %). Additionally, we can find that when
the activation sparsity exceeds a certain threshold (e.g., 95
% and 99 %) in the forward-backward process, it signifi-
cantly impacts model accuracy due to information loss in
the gradients used for calculating layer importance. This
finding aligns with the results reported in [11].

4.2.2. Details of Baselines
As outlined in the main paper, we compare our method,

SURGEON , against seven baselines: Source, BN-stat [20],
Full Tuning, TENT [22], CoTTA [23], EcoTTA [21], and
MECTA [9]. In the following, we provide additional details
on the TTA experiments for these baselines.

Source and BN-stat Both of these two baselines do not
require backward propagation to update the model. Source
refers to the original network without any adaptation. BN-
stat updates the running statistics (i.e., mean µ and standard
deviation σ) of BN layers during adaptation. We can set
model.train()5 instead of model.eval() to activate the update
of BN statistics.

Full Tuning In the CIFAR-to-CIFAR-C experiments, we
configure the learning rate to 1e-5 with the Adam optimizer
for both WideResNet-28 and ResNeXt-29 during TTA. In
the Cityscapes-to-ACDC experiments, we set the learning
rate to 1e-5 with the SGD optimizer for DeeplabV3+.

5https : / / pytorch . org / docs / stable / generated /
torch.nn.Module.html#torch.nn.Module.train



TENT In the CIFAR-to-CIFAR-C experiments, we set
the TTA learning rates to 5e-4, 1e-4, and 2.5e-4 with
the Adam optimizer for WideResNet-28, ResNeXt-29, and
ResNet-50, respectively. In the Cityscapes-to-ACDC ex-
periments, we set the learning rate to 1e-5 using the SGD
optimizer for DeeplabV3+.

CoTTA We reproduce the results using the code from the
official repository6. Following its settings, we use a restora-
tion probability of p = 0.01 for all CoTTA experiments.
In the CIFAR-to-CIFAR-C experiments, we set the learning
rate to 1e-3 with the Adam optimizer for both WideResNet-
28 and ResNeXt-29, and 1e-2 for ResNet-50, as specified in
the official code. In the Cityscapes-to-ACDC experiments,
we set the learning rate to 1e-4 with the Adam optimizer for
DeeplabV3+. For Segformer-B5, the learning rate is set to
7.5e-6.

EcoTTA To the best of our knowledge, the authors have
not yet released an official repository. We reproduce
EcoTTA thanks to a community implementation7.

In the CIFAR-to-CIFAR-C experiments, we set K =
5 in the plug-in meta networks for WideResNet-28 and
ResNet-50, following the original settings. For ResNeXt-
29, EcoTTA does not provide the configuration of meta
networks. We employ partition strategies of [3, 3, 3],
[2, 2, 2, 3], and [1, 1, 2, 2, 3] to divide the encoder of
ResNeXt-29 into 3, 4, and 5 partitions, respectively. In the
experiments of the main paper, we report the results with
the partition strategy [3, 3, 3] (K = 3) as it shows the best
performance among the three strategies.

In the experiments, we set the number of epochs to 10
and the learning rate to 5e-2 with the SGD optimizer for
warming up the meta networks. During TTA, learning rates
of 6e-2, 1e-2, 1e-2 with the SGD optimizer are used for
WideResNet-28, ResNeXt-29, and ResNet-50, respectively.
Note that the TTA learning rate for WideResNet-28 and
ResNet-50 differs slightly from the original paper (5e-3),
due to our use of a larger batch size during TTA.

Table 3 shows the EcoTTA experimental results for
ResNeXt-29 with three different meta network architec-
tures. Results for K = 3 are reported in the main paper.

Table 3. Mean online error (%) and cache size (MB) for EcoTTA
implementation with different partition strategies in ResNeXt-29.

Partition Strategy
[3,3,3]
(K=3)

[2,2,2,3]
(K=4)

[1,1,2,2,3]
(K=5)

Mean (%) 33.3 35.3 35.1
Cache (MB) 1050 1350 1950

6https://github.com/qinenergy/cotta
7https://github.com/Lily-Le/EcoTTA

Table 4. Mean online error (%), cache size (MB) and GFLOPs
(per sample) for TTA using ResNet-50 (AugMix) on ImageNet-
to-ImageNet-C. † refers to SURGEON (BN) + CSS, and ‡ refers to
SURGEON (BN) + CSS & CR.

Methods
Backward-free Backward-based

Source LAME FOA EcoTTA SURGEON† SURGEON‡

Mean (%) ↓ 74.4 72.3 62.8 54.2 54.6 53.9
Cache (MB) ↓ 196 196 199 1503 907 1834
GFLOPs ↓ 4.1 4.2 4.1 10.1 9.8 14.2

MECTA We reproduce the results of MECTA using the
official code8. In the CIFAR-to-CIFAR-C experiments,
MECTA is reported in two versions: one is the standalone
implementation (MECTA), and the other is a combined im-
plementation of MECTA and EATA (MECTA+EATA). The
hyperparameters for EATA [16] remain consistent, which
uses 2,000 training samples to estimate a Fisher matrix in
the original training process.

For WideResNet-28, we set the TTA learning rate to
1e-2 with the SGD optimizer, a layer freezing threshold
βth of 0.0075, and a channel pruning ratio of 0.7. For
ResNeXt-29, the TTA learning rates are set to 5e-4 and 1e-
3 with the SGD optimizer for the MECTA version and the
MECTA+EATA version, respectively. βth is set to 0.0025,
and the channel pruning ratio is 0.7, following the original
settings. For ResNet-50, the TTA learning rate is set to 1e-3
with the SGD optimizer for both the MECTA version and
the MECTA+EATA version. βth is set to 0.00125, and the
channel pruning ratio is 0.7, following the original settings.
Note that the TTA learning rate for ResNeXt-29 (1e-4) and
ResNet-50 (2.5e-4) differs slightly from the original paper
due to our use of a larger batch size during TTA.

In the Cityscapes-to-ACDC experiments, we utilize
only the standalone implementation of MECTA. For
DeeplabV3+, we set the TTA learning rate to 5e-4 with the
SGD optimizer, βth to 0.0025, and the pruning ratio to 0.7.
For Segformer-B5, the learning rate is set to 7.5e-6.

5. Further Comparisons with Backward-free
Methods

Recently, test-time adaptation methods without back-
ward propagation have garnered increasing attention [1, 17].
These methods introduce minimal memory and computa-
tional overhead, providing a substantial efficiency advan-
tage over backward-based approaches [18, 22, 23], which
typically incur significant costs. Therefore, we compare
the performance of SURGEON with two other backward-
free methods, LAME [1] and FOA [17]. The experiments
are conducted using ResNet-50 (AugMix) on ImageNet-
to-ImageNet-C. Results in Table 4 indicate that while
backward-free baselines exhibit minimal additional over-

8https://github.com/SonyResearch/MECTA



head, they still cannot fully replace backward-based meth-
ods across various TTA settings due to the potential accu-
racy limitation.

6. Limitations
SURGEON is built upon sparse activation techniques,

and its effectiveness on network architectures beyond those
examined in this paper is yet to be explored (e.g., ReLU,
sigmoid, and h-swish [10]). Moreover, sparse activations
do not affect the calculation of bias gradients. Although our
experiments demonstrate minimal bias impact, the evalua-
tion of bias based on layer importance for its update process,
particularly in other distribution shift scenarios, remains un-
explored in this paper.

Furthermore, in SURGEON the calculation of pruning
ratios necessitates an additional forward-backward process.
Despite our efforts to mitigate the computation and memory
cost of this process via designs like random sampling, it still
introduces additional cost and latency.

7. Future Work
In our future work, we will explore the potential of

SURGEON across a wider range of network architectures,
such as activation function layers (e.g., ReLU, sigmoid),
and its applicability to addressing diverse and complex
tasks [13, 24]. Moreover, we will delve into combining
SURGEON with other memory-efficient strategies, partic-
ularly system-level techniques [12, 15].

Additionally, we aim to investigate whether layer impor-
tance in the context of TTA is more directly correlated with
issues related to error accumulation, such as the propensity
for catastrophic forgetting with increasing update frequen-
cies. Lastly, our future directions will also be assessing the
importance of layers beyond gradients and establishing a
better mapping from layer importance to layer-wise activa-
tion pruning ratios.

References
[1] Malik Boudiaf, Romain Mueller, Ismail Ben Ayed, and Luca

Bertinetto. Parameter-free online test-time adaptation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 8344–8353, 2022. 5

[2] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
Proceedings of the European conference on computer vision
(ECCV), pages 801–818, 2018. 1, 3

[3] Sungha Choi, Sanghun Jung, Huiwon Yun, Joanne T Kim,
Seungryong Kim, and Jaegul Choo. Robustnet: Improving
domain generalization in urban-scene segmentation via in-
stance selective whitening. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 11580–11590, 2021. 3

[4] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3213–3223, 2016. 1, 3

[5] Francesco Croce, Maksym Andriushchenko, Vikash Se-
hwag, Edoardo Debenedetti, Nicolas Flammarion, Mung
Chiang, Prateek Mittal, and Matthias Hein. Robustbench:
a standardized adversarial robustness benchmark. NeurIPS
2021 Datasets and Benchmarks Track, 2021. 3

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 3

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 3

[8] Dan Hendrycks and Thomas Dietterich. Benchmarking neu-
ral network robustness to common corruptions and perturba-
tions. In 2019 International Conference on Learning Repre-
sentations, 2019. 3

[9] Junyuan Hong, Lingjuan Lyu, Jiayu Zhou, and Michael
Spranger. Mecta: Memory-economic continual test-time
model adaptation. In 2023 International Conference on
Learning Representations, 2023. 4

[10] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-
bilenetv3. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 1314–1324, 2019. 6

[11] Ziyu Jiang, Xuxi Chen, Xueqin Huang, Xianzhi Du, Denny
Zhou, and Zhangyang Wang. Back razor: Memory-
efficient transfer learning by self-sparsified backpropagation.
Advances in Neural Information Processing Systems, 35:
29248–29261, 2022. 3, 4

[12] Jaehoon Jung, Jinpyo Kim, and Jaejin Lee. Deepum: Tensor
migration and prefetching in unified memory. In Proceed-
ings of the 28th ACM International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, Volume 2, pages 207–221, 2023. 6

[13] Adilbek Karmanov, Dayan Guan, Shijian Lu, Abdulmo-
taleb El Saddik, and Eric Xing. Efficient test-time
adaptation of vision-language models. arXiv preprint
arXiv:2403.18293, 2024. 6

[14] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 1, 3

[15] Sicong Liu, Bin Guo, Cheng Fang, Ziqi Wang, Shiyan Luo,
Zimu Zhou, and Zhiwen Yu. Enabling resource-efficient aiot
system with cross-level optimization: A survey. IEEE Com-
munications Surveys & Tutorials, 2023. 6

[16] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen,
Shijian Zheng, Peilin Zhao, and Mingkui Tan. Efficient test-
time model adaptation without forgetting. In 2022 Interna-
tional conference on machine learning, pages 16888–16905.
PMLR, 2022. 5



[17] Shuaicheng Niu, Chunyan Miao, Guohao Chen, Pengcheng
Wu, and Peilin Zhao. Test-time model adaptation with
only forward passes. In Proceedings of the 41st Inter-
national Conference on Machine Learning, pages 38298–
38315, 2024. 5

[18] Ori Press, Steffen Schneider, Matthias Kümmerer, and
Matthias Bethge. Rdumb: A simple approach that questions
our progress in continual test-time adaptation. Advances in
Neural Information Processing Systems, 36:39915–39935,
2023. 5

[19] Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Acdc:
The adverse conditions dataset with correspondences for se-
mantic driving scene understanding. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 10765–10775, 2021. 3

[20] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bring-
mann, Wieland Brendel, and Matthias Bethge. Improving
robustness against common corruptions by covariate shift
adaptation. Advances in neural information processing sys-
tems, 33:11539–11551, 2020. 4

[21] Junha Song, Jungsoo Lee, In So Kweon, and Sungha Choi.
Ecotta: Memory-efficient continual test-time adaptation via
self-distilled regularization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 11920–11929, 2023. 4

[22] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-
shausen, and Trevor Darrell. Tent: Fully test-time adaptation
by entropy minimization. In 2021 International Conference
on Learning Representations, 2021. 4, 5

[23] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai.
Continual test-time domain adaptation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7201–7211, 2022. 3, 4, 5

[24] Zhiquan Wen, Shuaicheng Niu, Ge Li, Qingyao Wu,
Mingkui Tan, and Qi Wu. Test-time model adaptation for
visual question answering with debiased self-supervisions.
IEEE Transactions on Multimedia, 2023. 6

[25] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. Segformer: Simple and
efficient design for semantic segmentation with transform-
ers. Advances in neural information processing systems, 34:
12077–12090, 2021. 3

[26] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1492–1500,
2017. 1, 3

[27] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. In Proceedings of the British Machine Vision Confer-
ence 2016, 2016. 1, 3


