
Supplementary Materials of “Sparse Point Cloud Patches Rendering via
Splitting 2D Gaussians”

Changfeng Ma1, Ran Bi1, Jie Guo1, Chongjun Wang1, Yanwen Guo12∗

1Nanjing University, Nanjing, China 2School of Software, North University of China
{changfengma, 211250233}@smail.nju.edu.cn

{guojie,chjwang,ywguo}@nju.edu.cn

𝒏𝒏 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏

𝛼𝛼

𝑀𝑀1 𝑀𝑀2

Figure 1. The illustration of our conversion process from the nor-
mal vector n and angle α to the quaternion q.

1. Implement Details
1.1. Quaternion Representation
In this paper, we utilize the normal vector n and the rota-
tion angle α about this normal to describe the orientation
of Gaussians, rather than employing quaternions as used
by 3DGS[8] and 2DGS[6]. This representation approach
simplifies the initialization and prediction of Gaussian ro-
tations in our method. To facilitate the splatting render-
ing proposed by 2DGS, we subsequently convert the nor-
mal vector n and the rotation angle α into the quaternion
q. As depicted in Figure 1, the conversion process consists
of two steps. Firstly, we determine the rotation matrix M1

from the initial normal n′ = [0, 0, 1] to the predicted nor-
mal n. Subsequently, we compute the rotation matrix M2

that represents the rotation around the normal vector n by
an angle α. These two processes can be accomplished us-
ing Rodrigues’ rotation formula. Finally, the quaternion q
is converted from the rotation matrix M = M1M2.

1.2. Normalization and De-normalization
The normalization and de-normalization processes are as
follows in the pseudocode below.

1 def normalize(points):
2 maxp = max(points, axis=0)
3 minp = min(points, axis=0)
4 c = (maxp + minp) / 2
5 s = max(maxp-c)

6 points = (points-c)/s
7 return points, c, s
8 def denormalize(X, S, c, s):
9 X = X * s + c

10 S = S * s
11 return X, S

1.3. 2D Gaussian Prediction Module
Encoder. We employ the basic PointMLP[9] as our encoder
E to extract features Fl from points. The input channel
number of E is 11 = 3+3+3+2 (positions Xi (3), colors
Ci (3), normals N i (3) and initialized scale Si (2)). The
output channel number that is the channel of the features is
640, where each point contains one feature.
Splitting Decoder. We utilize a weight-shared Multi-Layer
Perceptron (MLP) [2] to complement our splitting decoder.
Each parameter of the 2D Gaussian is predicted by a split-
ting decoder. The input channel numbers of all the split-
ting decoders are 640 + 11 (feature Fl (640), positions Xi

(3), colors Ci (3), normals N i (3) and initialized scale Si

(2)). The hidden layers of all the decoders are 512, 512,
512, 256 and 128. The output channels of the decoder are
K × c, where K is the number of splits and c varies de-
pending on the specific decoder. The values of c for the
decoders Dx, Ds, Dc, Dn, Dα and Do are 3, 2, 27, 3, 1 and
1, respectively. The shape of the output from the decoder is
[N,K × c]. Following the reshape operation, the shape of
the output becomes [N ×K, c], thereby achieving the split-
ting of the predicted Gaussian. Here is the pseudocode for
the splitting decoder, using Dx as an example.

1 def D_x(F_l, X_i, C_i, N_i, S_i):
2 shift_x = MLP(F_l, X_i, C_i, N_i, S_i)
3 # [N, K*3]
4 shift_x = shift_x.reshape([N*K, 3])
5 # [N*K, 3]
6 X_p = X_i.reshape([N, 1, 3]).repeat([1,

K, 1]).reshape([N*K, 3])
7 # [N*K, 3]

1



8 X_p = X_p + shift_x
9 return X_p

1.4. Entire-Patch Architecture

As we mentioned in the paper, we initially train Ne using
complete point cloud Pe and corresponding complete im-
ages. Then, we freeze Ne in order to train Np. The training
process is illustrated in the pseudocode below.

1 N_e.requires_grad = False
2 optimizer = Optimizer(N_p, lr)
3 for step in range(step_N):
4 P_e, I_gt = Training_Data[step]
5 G_e = N_e(P_e)
6 P_p, mask = get_random_patch(P_e)
7 G_p = N_p(P_p)
8 G = concatenate(G_e[˜mask], G_p[mask])
9 I_pred = splatting_render(G)

10 loss = L(I_pred, I_gt)
11 optimizer.zero_grad()
12 loss.backward()
13 optimizer.step()

The pseudocode for sampling the entire point cloud Pe

into multiple patches, as utilized in the inference of Np, is
provided below.

1 def get_patches(P_e):
2 P_rest = P_e
3 P_p = []
4 while True:
5 center = random_select(P_rest)
6 mask = KNN(P_e, center, patch_N)
7 p = P_e[mask]
8 P_p.append(p)
9 P_rest = P_rest[˜mask]

10 if P_rest is empty:
11 break

2. More Experiments and Results

2.1. Evaluation on Different Point Number

Figure 2 presents the rendering images of our method,
TriVol [5] and PFGS [11] on different point numbers for
qualitative comparison. Here, the methods are trained using
Car category with 2K, 10K, 20K and 40K points. Our ren-
dering results maintain clear details on sparse point clouds.
The taillights predicted by our method exhibit two dis-
tinct lights even when the input point cloud contains only
2K points. Likewise, the wheels predicted by our method
are clearer compared to those predicted by other methods.
This comparison illustrates that our method adeptly handles
sparse point clouds with the aid of splitting decoders.

2K 10K 20K 40K

Tr
iV

ol
PF

G
S

O
ur

s

Figure 2. The rendering results of different methods trained on the
Car category with 2K, 10K, 20K and 40K points.

TriVol PFGS Ours GT

Sc
an

N
et

D
TU

Sh
oe

 (G
SO

)
C

ha
ir 

(S
ha

pe
N

et
)

TH
um

an
2.

0

Figure 3. The evaluation results of our methods and previous
methods on different datasets, where all methods are trained on
the Car category with 20K points.

2.2. Evaluation of Generalization Capability

For a qualitative comparison, we train our method, TriVol,
and PFGS on the car category using 20K points, and sub-
sequently evaluate their performance across different cat-
egories. Figure 3 depicts the rendering outcomes of the
methods on additional categories. These additional cat-
egories encompass object-level categories such as chair
(ShapeNet [1]), shoe (ShapeNet), and human (THuman2.0
[12]), as well as scene-level datasets including ScanNet [3]
and DTU [7]. The rendered results on objects of our method
exhibit intricate details, such as the lattice of the chair, the
pattern of the shoe, and the text on the clothing. Con-
versely, other methods only predict blurred results. Addi-
tionally, our method is also applicable to scene-level data,
whereas other methods fail to produce accurate results. Ta-



Table 1. The evaluation of our method on different datasets including scenes, objects and human bodies, where our method is trained on
the Car category with 20K point number.

Method Point
Number

ScanNet[3] Car (ShapeNet[1]) Chair (ShapeNet[1]) Shoe (GSO[4]) THuman2.0[12]

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Ours
Car(ShapeNet)

20K points

20K 16.98 0.659 0.623 25.13 0.934 0.080 26.57 0.940 0.074 28.22 0.952 0.052 30.29 0.963 0.049

40K 17.59 0.669 0.591 24.46 0.928 0.076 26.28 0.942 0.077 27.15 0.948 0.047 30.87 0.968 0.038

100K 17.86 0.672 0.560 26.52 0.931 0.050 25.25 0.935 0.060 27.18 0.949 0.037 29.58 0.966 0.033

Tr
iV

ol
PF

G
S

O
ur

s

2K 10K 40K 100K

Figure 4. The evaluation results of our methods and previous
methods on the Car category with 2K, 10K, 40K and 100K points,
where all methods are trained on the Car category with 20K points.

ble 1 shows evaluation results of our method trained on
Car category with 20K on other datasets with varying input
point numbers. Although the performance of our method
declined slightly, it was still comparable to the performance
of previous works.

As depicted in Figure 4, we also compared the trained
methods on the Car category with varying point numbers to
verify the robustness of the methods across different point
clouds. Here, the methods are evaluated on 2K, 10K, 40K
and 100K points. The results of our method not only ex-
hibit more details when the point number is high, but also
maintain the basic details of objects when the point num-
ber is low. On the contrary, when the point number is high,
the predictions of other methods are blurry and lack detail,
while they struggle to generate complete images when the
point number is low.

Both quantitative and qualitative evaluations demon-
strate the exceptional generalization capability of our
method across different categories and its robustness on dif-
ferent input point numbers.

2.3. Multi-View Consistency
We also render consecutive views around objects to verify
the multi-view consistency of different methods. The re-
sults are presented in the video included in our supplemen-

GR TriVol

PFGS Ours GT

NPBG++

Figure 5. The illustration of our limitation.

tary materials, demonstrating that our method exhibits ex-
cellent multi-view consistency and rich detail. PFGS em-
ploys a 2-stage image refinement process to enhance the
rendered images of predicted Gaussians, hence its results
lack multi-view consistency and exhibit noticeable abrupt
changes in the imagery.

2.4. More Comparison
Figures 6, 7, 8, and 9 present additional comparisons of our
method with NPBG++[10], TriVol[5], and PFGS[11].

2.5. Limitation
A limitation of our method may arise when a portion of a
point cloud is absent. As depicted in Figure 5, our method
is unable to render a complete image without the direct sup-
port of the points, leaving areas unfilled and appearing as
black. Such large missing areas are also beyond the pre-
dictive capabilities of other methods. Therefore, our future
work aims to address this limitation by incorporating point
cloud completion techniques.

References
[1] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat

Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and
Fisher Yu. Shapenet: An information-rich 3d model reposi-
tory, 2015. 2, 3

[2] Kaichun Mo Leonidas J. Guibas Charles R. Qi, Hao Su.
Pointnet: Deep learning on point sets for 3d classification



NPBG++ TriVol PFGS Ours GT

Figure 6. Additional comparison on Car category.

and segmentation. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, 2017. 1

[3] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE, 2017. 2, 3

[4] Laura Downs, Anthony Francis, Nate Koenig, Bran-
don Kinman, Ryan Michael Hickman, Krista Reymann,
Thomas Barlow McHugh, and Vincent Vanhoucke. Google
scanned objects: A high-quality dataset of 3d scanned house-
hold items. 2022 International Conference on Robotics and

Automation (ICRA), pages 2553–2560, 2022. 3
[5] Tao Hu, Xiaogang Xu, Ruihang Chu, and Jiaya Jia. Trivol:

Point cloud rendering via triple volumes. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 20732–20741, 2023. 2, 3

[6] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and
Shenghua Gao. 2d gaussian splatting for geometrically accu-
rate radiance fields. In SIGGRAPH 2024 Conference Papers.
Association for Computing Machinery, 2024. 1

[7] Rasmus Jensen, Anders Dahl, George Vogiatzis, Engil Tola,
and Henrik Aanæs. Large scale multi-view stereopsis eval-
uation. In 2014 IEEE Conference on Computer Vision and



NPBG++ TriVol PFGS Ours GT

Figure 7. Additional comparison on Chair and Human categories.

Pattern Recognition, pages 406–413, 2014. 2

[8] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42
(4), 2023. 1

[9] Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Re-
thinking network design and local geometry in point cloud:
A simple residual mlp framework. ICLR, 2022. 1

[10] Ruslan Rakhimov, Andrei-Timotei Ardelean, Victor Lem-
pitsky, and Evgeny Burnaev. Npbg++: Accelerating neu-
ral point-based graphics. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition
(CVPR), pages 15969–15979, 2022. 3

[11] Jiaxu Wang, Ziyi Zhang, Junhao He, and Renjing Xu. Pfgs:
High fidelity point cloud rendering via feature splatting.
ECCV 2024, 2024. 2, 3

[12] Tao Yu, Zerong Zheng, Kaiwen Guo, Pengpeng Liu, Qiong-
hai Dai, and Yebin Liu. Function4d: Real-time human vol-
umetric capture from very sparse consumer rgbd sensors. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR2021), 2021. 2, 3



NPBG++ TriVol PFGS Ours GT

Figure 8. Additional comparison on Shoe category.



NPBG++ TriVol PFGS Ours GT

Figure 9. Additional comparison on ScanNet.


	Implement Details
	Quaternion Representation
	Normalization and De-normalization
	2D Gaussian Prediction Module
	Entire-Patch Architecture

	More Experiments and Results
	Evaluation on Different Point Number
	Evaluation of Generalization Capability
	Multi-View Consistency
	More Comparison
	Limitation


