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1. Loss Function Formulations
We provide the specific definitions of Lce and Ldice men-
tioned in Eq. (7) (Sec. 3.3):

Lce(y, p, w) = − 1

H ×W

H×W∑
i=1

wiyi log pi, (1)

Ldice(y, p, w) = 1−
2×

∑H×W
i=1 wipiyi∑H×W

i=1 wi(p2i + y2i )
, (2)

where yi, pi, and wi is ith pixel of y, p, and w, respectively.

2. Visual Results Across Multiple Datasets
We provide visual results of different methods on Fundus,
M&Ms, and BUSI datasets. As shown in Figs. 1 to 3, our
SynFoC achieves optimal segmentation results on both test
samples from the same and different domains as labeled
data, with minimal error compared to the ground truth.
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Figure 1. Visual comparison of different methods on Fundus
dataset. The test samples are drawn from the labeled domain 1
and another domain 4, respectively.

3. Reproduction of SemiSAM Method
We compare all other methods by their official code imple-
mentations, whereas we reproduce SemiSAM since its pub-
lic code has not been released. SemiSAM, based on the
SSMIS framework, utilize predictions from conventional
model to generate prompts for frozen foundation model.
In turn, foundation model generates predictions based on
the prompts to provide additional supervision for conven-
tional model. To address domain shift issue, we replace the
UAMT used in the original paper with the training method
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Figure 2. Visual comparison of different methods on M&Ms
dataset. The test samples are drawn from the labeled Vendor D
and another Vendor C, respectively.
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Figure 3. Visual comparison of different methods on BUSI dataset.
The test samples are drawn from the labeled domain Malignant
and another domain Benign, respectively.

described in Sec. 3.1. We standardize the use of MedSAM
as the foundation model. Since MedSAM is fine-tuned
on large-scale medical data with bounding boxes based on
SAM, we provide bounding box prompts from the conven-
tional model to the frozen MedSAM in SemiSAM.

4. Comparison with More Methods
As shown in Tab. 1, we conduct further comparisons on
Prostate and Fundus datasets to demonstrate the superior-
ity of our method. The methods include UDA approaches
(SIFA [3] and UDA-VAE++ [5]), MedSAM with precise
bounding box prompts, and fully fine-tuned MedSAM (in-
stead of LoRA-based strategy). It can be observed that UDA
methods struggle to achieve satisfactory performance when
the number of labeled data is limited. Despite being pro-



Method DSC ↑ Jaccard ↑ 95HD ↓ ASD ↓

Prostate 20 labels

SIFA [3] 59.33 45.40 53.90 24.29
UDA-VAE++ [5] 64.36 50.27 33.14 15.11

MedSAMBounding box 77.39 63.67 13.22 6.27
MedSAMFull Fine-tuning 81.78 72.21 30.78 13.73

SynFoC 87.16 79.30 10.26 4.41

Fundus 20 labels

SIFA [3] 67.78 54.77 20.16 10.93
UDA-VAE++ [5] 73.51 61.40 17.60 9.86

MedSAMBounding box 77.82 64.87 15.21 6.62
MedSAMFull Fine-tuning 85.99 77.18 9.04 4.48

SynFoC 88.60 80.50 6.56 3.47

Table 1. Comparison of different methods on Prostate and Fundus
datasets.

vided with precise bounding box prompts, MedSAM still
falls short in specific datasets. Even with full fine-tuning,
MedSAM struggles to correct high-confidence mispredic-
tions, while significantly increasing training costs.

5. More Ablation Studies
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Figure 4. The performance comparison of U-Net and MedSAM
under standalone training and our SynFoC across four datasets.

Comparison with Standalone U-Net and MedSAM
Across Four Datasets. We present the advantages of
our method over standalone U-Net and MedSAM on four
datasets in Fig. 4. Unlike in Fig. 3 (Sec. 3.3), where we
compare standalone U-Net and MedSAM with SMC-based
synergistic training, here we compare them with our overall
method, SynFoC. Our method effectively mitigates U-Net’s
overfitting and further advances MedSAM’s performance
in downstream tasks across all four datasets, demonstrating
superior capabilities in handling significant domain gaps in
training data.

In Fig. 5, we present the performance curves of stan-
dalone U-Net and MedSAM, as well as U-Net and Med-
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Figure 5. The experimental results on Prostate with 20 labeled
data from BIDMC and HK. Each subplot displays the performance
curves of individually trained MedSAM and U-Net , as well as the
performance curves of MedSAM and U-Net under SynFoC.

SAM trained within our SynFoC framework, across two
experiments on Prostate dataset (labeled data sourced from
BIDMC and HK, respectively). Both U-Net and MedSAM
demonstrate significant performance improvements when
trained with SynFoC.

U-Net MedSAM DSC ↑ Jaccard ↑ 95HD ↓ ASD ↓

SGD SGD 76.56 65.85 24.51 10.70
Adam Adam 87.01 79.10 10.61 4.43
Adam SGD - - - -
SGD Adam 87.16 79.30 10.26 4.41

Table 2. Ablation study of different optimizer choices.

Different optimizer choices. We explore the impact
of different optimizer choices for U-Net and MedSAM on
Prostate dataset. As shown in Tab. 2, the best performance
is achieved when U-Net and MedSAM are optimized with
SGD and Adam, respectively.

τ DSC ↑ Jaccard ↑ 95HD ↓ ASD ↓

0.85 86.71 78.73 10.87 4.58
0.90 87.08 79.19 10.85 4.54
0.95 87.16 79.30 10.26 4.41
0.98 86.68 78.78 11.55 4.98
0.99 86.62 78.71 11.12 4.90

Table 3. Ablation study of different confidence threshold τ .

Discussion on τ . On Prostate dataset, we investigate the
effect of varying the threshold τ on our method. In Tab. 3,
a setting of 0.95 yields the optimal performance, and the
results remain stable across other threshold values.

6. The Performance on SSMIS and UDA set-
tings

Our SynFoC offers a general solution to address domain
shifts and limited labeled data. As shown in Tabs. 5 and 6,
we conduct experiments on the ACDC dataset [2] (contain-
ing 100 patients’ scans) and the MSCMRSeg dataset [8]



Method DSC ↑ DSC ↑ Jaccard ↑ 95HD ↓ ASD ↓
RUNMC BMC HCRUDB UCL BIDMC HK Avg. Avg. Avg. Avg.

StandaloneU-Net 87.74 67.96 82.45 86.31 41.91 84.35 75.12 65.76 54.67 29.08
StandaloneSAM 81.15 75.26 81.93 84.78 75.09 81.26 79.91 70.35 21.59 9.22
SynFoCU-Net 88.05 84.42 84.11 88.00 86.84 87.31 86.46 78.84 11.66 5.03
SynFoCSAM 88.41 84.94 84.51 88.71 86.71 87.63 86.82 79.21 10.57 4.65

Table 4. Ablation experiments on Prostate dataset.

Method Scans used Metrics

L U DSC ↑ ASD ↓

SupOnly
3(5%) 0 47.83 12.62
7(%10) 0 79.41 2.70
70(All) 0 91.44 0.99

SS-Net [7]

3(5%) 67(95%)

65.83 2.28
BCP [1] 87.59 0.67
ABD [4] 88.96 0.52
SynFoC 88.32 0.70

SS-Net [7]

7(10%) 63(90%)

86.78 1.40
BCP [1] 88.84 1.17
ABD [4] 89.81 0.49
SynFoC 89.68 1.17

Table 5. Comparison of different methods on ACDC dataset.

Method DSC ↑
MYO LV RV Avg.

Adaptation from CT to MRI

NoAdapt 14.50 34.51 31.10 26.70
SIFA [3] 67.69 83.31 79.04 76.68

UDA-VAE [6] 68.42 84.41 72.59 75.14
UDA-VAE++ [5] 70.75 88.64 75.82 78.40

SynFoC 71.47 86.90 78.81 79.06

Adaptation from MRI to CT

NoAdapt 12.32 30.24 37.25 26.60
SIFA [3] 60.89 79.32 82.39 74.20

UDA-VAE [6] 58.58 79.43 80.43 72.81
UDA-VAE++ [5] 68.74 85.08 81.42 78.41

SynFoC 78.26 88.25 82.97 83.16

Table 6. Comparison of different methods on MSCMRSeg dataset.

(containing 35 labeled CT images and 45 labeled LGE-MRI
images), demonstrating its competitive performance in tra-
ditional SSMIS and UDA settings.

7. Common Challenges of Foundation Models
As shown in Tab. 4, SAM also struggles to correct high-
confidence mispredictions. Due to large-scale pretraining,
the issue of error accumulation is a common challenge
for foundation models in downstream tasks. Our SynFoC
method is not limited to the combination of U-Net and Med-
SAM. Through the Synergistic training of conventional and
foundation models, we achieve significant performance im-

provements for both models.

8. Limitations and Future Works
As shown in Fig. 6, in the experiments on M&Ms dataset,
by deeply analyzing the results, we found that SynFoC and
most existing methods struggle with extremely small tar-
gets. Visual analysis of error cases reveals that tiny size
and low boundary contrast often lead to over- or under-
segmentation. Additionally, our method focuses on 2D
medical image segmentation and lacks exploration in 3D
medical image segmentation. Future work could enhance
the precise segmentation of extremely small targets and ex-
tend the framework to 3D medical images.
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Figure 6. Visual results of error cases on M&Ms dataset.
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