
Compositional Targeted Multi-Label Universal Perturbations

Supplementary Material

7. Derivation of CMLUα and CMLUβ

In this section, we provide more details of the derivation
from the main paper. In particular, we focus on deriving
Eq. (7). We begin by considering Eq. (5)

max
U

∑
Ω∈P(C)

∑
k∈Ω

(
Hk(uk+UλΩ\k)− γ

|Ω|
∑
q∈Ω̄

Rq(uk+UλΩ\k)
)
,

s. t. Û
>
Û = I, ‖U‖1,p ≤ ε (12)

where Û is column-normalized U and ‖U‖1,p =
max1≤i≤|C| ‖ui‖p, is the maximum norm of the columns
ofU . Notice that we wrote uΩ = uk +UλΩ\k for a k that
belongs to Ω, where Ω\k denotes removing k from Ω. The
sum in Eq. (12) is across the power set of C.

7.1. Powerset Reformulation
In our derivation, we have two key steps (corresponding to
two observations) that involve expressing the powerset of a
set in a specific way. We explain those steps below.

Observation 1: For any k ∈ C, the subsets of powerset
P(C) that include k can be written as:

Pk ,
⋃

Ω∈P(C\k)

{
{k}∪Ω

}
,
{
{k}∪Ω | Ω ∈ P(C\{k}

}
(13)

Pk in Eq. (13) gives all subsets of C that include k, con-
structed by taking all the possible subsets of C\{k} and
adding k to them. Based on this, the key observation is that
we can combine these contributions (Pk) from all k ∈ C to
reconstruct the entire powerset P(C) (excluding the empty
set) as

P(C) ,
⋃
k∈C

Pk ,
⋃
k∈C

⋃
Ω∈P(C\k)

{
{k} ∪ Ω

}
(14)

Eq. (14) allows us to leverage the property of decom-
posing the powerset into a union of sets. This structure re-
veals the inherent symmetry and compositional nature of
the powerset. Therefore, using Eq. (14), we can recon-
struct the summation across the power set in Eq. (12). How-
ever, (14) introduced redundancy, as each subset is repeated
|Ω| + 1 time in the formulation. To account for this, one
could multiply the loss expression by a factor of 1/(|Ω|+1),
which just scales the loss. So instead, we directly optimize

max
U

∑
k∈C

∑
Ω∈P(C\k)

(
Hk(uk+UλΩ\k)−η

∑
q∈{Ω̄\k}

Rq(uk+UλΩ\k)
)
,

s. t. Û
>
Û = I, ‖U‖1,p ≤ ε, (15)

where η = γ/|Ω|. Note the change in the indexing of the
second loss term in (15). This adjustment ensures consis-
tency with (12) by enforcing that the sum of non-targeted
loss excludes k in our new formulation.

Observation 2: The power set of C can be written as the
union of subsets of C of fixed size:

P(C) ,
|C|⋃
t=0

(
C
t

)
,
|C|⋃
t=0

⋃
S∈(C

t)

{S} (16)

where, each S ∈
(C
t

)
is a subset of C of size t.

In our case, any S ∈
(C
t

)
would represent the indices

of the columns of U . Using (16), we write the summation
across the power set P(C\k) in (15) as

max
U

∑
k∈C

|C|−1∑
t=0

∑
S∈(C\k

t)

(
Hk(uk+UλS)−η

∑
q∈{S̄\k}

Rq(uk+UλS)
)
,

s. t. Û
>
Û = I, ‖U‖1,p ≤ ε, (17)

Please refer to the main paper for the rest of the deriva-
tion.

8. Analysis of Universal Perturbations
In Fig. 6, we visualize label-wise universal perturbations
generated using the Oracle, CMLUα, and CMLUβ meth-
ods on the NUS-WIDE dataset for the ASL model, along
with some of their compositions. Note that the perturba-
tions produced by the Oracle method exhibit significant tex-
ture variations across labels, and combining these perturba-
tions often causes the key adversarial features of individ-
ual classes to diminish or fade away. In contrast, CMLUα
and CMLUβ learn label-wise perturbations with subtle vari-
ations, enabling their composition to preserve shared fea-
tures across labels while de-emphasizing conflicting tex-
tures. This demonstrates the effectiveness of CMLUβ for
attacking multiple classes.

In Tab. 7, we show the pairwise dot products of univer-
sals computed using Oracle and CMLUβ . The purpose of
this experiment is to evaluate the difference between the
vulnerability directions found through each of the methods.
From the table, we can see that CMLUβ finds unique direc-
tions, different from Oracle.

In Tab. 4 in the main paper, we showed the fooling suc-
cess rate to evaluate the transferability of universal attacks
across model. In Tab. 5, we show non-target flip rate (NTR)
values. From both tables, we can see that when CMLUβ

Table 5. Non-target flip rate (NTR) of Transferability Experiments
using the ASL model.

Transferability of Universal Attacks

NUS-WIDE MS-COCO

Models Method 1 3 5 1 3 5

A→ D Oracle 3.81 3.88 3.65 5.29 8.03 9.45
CMLUβ 4.21 3.80 3.29 7.39 8.39 9.04

D→ A Oracle 4.22 4.86 - 7.54 9.07 10.07
CMLUβ 6.02 0.85 - 10.6 10.9 13.3

achieves better FR than Oracle, it also gets higher NTR than
Oracle. In the case, when it performs worse than Oracle, it
has lower NTR.

9. Wall Clock Time
In Tab. 6, we present the computational complexity and
wall-clock times for each method, illustrating their practi-
cal efficiency. It is important to highlight that the total time
column (T) in the table reflects only a few target sizes (1, 3,
5) and accounts for only a small subset S(|Ω|) of all pos-
sible combinations of a fixed size |Ω|. For methods like
Oracle and Or-C, these times would increase significantly
with larger target sizes.

From the table, we make the following observations:
• The computational time of Oracle and Or-C continues to

increases as additional target sizes are considered, mak-
ing them less practical for large datasets and target sizes.
In contrast, our methods, CMLUα and CMLUβ , require
training only for |Ω| = 1, and their computational costs
remain constant regardless of the number of target sizes.

• Note that CMLUα is more computationally expensive
than CMLUβ . This cost is due to the inner minimization
step involving Nα iterations.

• Or-S and CMLUβ have the same time complexity and
wall clock time. But as we have shown in the main pa-
per, CMLUβ achieves performance close to exponential
time Oracle method while Or-S scales poorly to large tar-
get sizes.

10. Hyperparameters and Experiment Setting
In algorithm 1, we mainly have five hyperparameters:
ε, η = κ

|Ω| , α, Nα, and ξ. In our experiments, we set
κ = 20 for NUS-WIDE and OpenImages experiments and
κ = 10 for MS-COCO. In all of our main experiments, we
use Nα = 10, α = 1e2, ε = 0.05, and ξ = 0.002. We set
the random seed for pytorch and numpy to 999. We use the
officially provided train/val split to train the models and test
split to evaluate the attacks. We used batch size of 40 in our
experiments. All images were resized and center-cropped
to 448 x 448.

11. Generating Convex Subcones
The purpose of Fig. 5 in the main paper is to demonstrate
why our assumption (4) works with CMLU but fails with
other methods. The figure compares the input regions that
Oracle and CMLUβ have learnt. In the figure, Oracle plot
shows the class-specific universals learnt using Oracle for
|Ω| = 1.

Consider a multi-label classifier F : Rd → R|C|
where C is the set of all labels. The classifier F =
{F1,F2, . . . ,F|C|} consists of |C| binary classifiers (one for
each label), whereFc(x) ∈ (−∞,+∞) represents the logit
of label c.
• AssumeUOr represents |C| universals learnt using Oracle

Eq. (1), where each universal vector uk ∈ UOr attacks
the specific class k.

• Assume Uβ represents |C| universals learnt using
CMLUβ Eq. (10), where each universal vector uk ∈ Uβ

attacks the specific class k.
First, we plot the average model confidence for all pos-

sible pairs of vectors from UOr using (18) and then we plot
the average model confidence for all possible pairs of vec-
tors from Uβ . We consider a set Q =

(C
2

)
i.e., all possible

pairs of classes. Assume IΩ are the clean images that con-
tain classes Ω. Then, the value at each point (i, j) in the 2D
plot in Fig. 5 is computed as:

C(i, j) =
1

|Q|
∑
Ω∈Q

1

|IΩ|
∑
x∈IΩ

1

|Ω|
∑
k∈Ω

σ(Fk(x+ vΩ(i, j)))

where, vΩ(i, j) = Πε(i ∗ uΩ1 + j ∗ uΩ2)
(18)

for i, j ∈ [0, 1]. Πε projects the input on ε infinity norm
ball and σ is the sigmoid function. Note that the value
C(i, j) is computed across all target classes Q and all im-
ages IΩ for a point (i, j). This renders the cross-section
of the input space to visualize the universal adversarial re-
gions. Note that the vectors are not mutually sparse. We
clip the cone at 0.05 infinity norm.

While summing universals learnt using (1) fails to suc-
cessfully attack (no red regions), CMLUβ learns universals
whose sums effectively attack target labels (red regions).
This validates that our framework can learn compositional
universal perturbations. Furthermore, the figure provides
intuitive 2D insights into MLL model behavior.

12. Limitation
A limitation of our work is the assumption of label inde-
pendence. In MLL, several labels can be correlated, such
as ”Cat and Animal” or ”Beach and Ocean”. This corre-
lation results in a tightly coupled FR and NTR (reducing
NTR would also reduce FR e.g., if we want to attack Cat
but keep Animal unchanged). This was also shown in our
ablation experiments. Similarly, for high FR, we see an in-
creased NTR for larger target sizes. To address this, future

Table 6. Complexity and wall clock time of the methods. We show the approximate average time (in hours) for a single training iteration
of the methods on an NVIDIA-V100 32GB GPU. The values are rounded off to the nearest integer. For a given target set size |Ω|, S(|Ω|)
is the number of selected sets or label combinations of size |Ω|. The column T is the sum of the columns (|Ω| = 1, 3, 5) to show the total
compute time across different targets.

Complexity NUS-WIDE MS-COCO OpenImages

|Ω| Space Time 1 3 5 T 1 3 5 T 1 3 5 T

S(|Ω|) 25 40 40 105 40 50 50 140 100 100 100 300

Oracle O(d 2|C|) O(E 2|C|) 11 18 18 47 18 23 23 64 47 47 47 141
Or-S O(d |C|) O(E |C|) 11 - - 11 18 - - 18 47 - - 47
Or-C O(d|C|+2|C|) O(E 2|C|) 11 17 17 45 18 22 22 62 47 43 43 133
SGA O(d |C|) O(E |C|) 23 - - 23 31 - - 31 112 - - 112
NAG O(Gp) O(E |C|) 23 - - 23 37 - - 37 92 - - 92

CMLUα O(d |C|) O(ENα|C|) 28 - - 28 38 - - 38 137 - - 137
CMLUβ O(d |C|) O(E |C|) 11 - - 11 18 - - 18 48 - - 48

Table 7. The table shows mean dot product values of the normalized perturbation vectors computed across all target class combinations for
each target size |Ω|. The perturbations are learnt on NUS-WIDE, using ASL and ML-Decoder models.

Target 1 Target 3 Target 5

ASL ML-Dec ASL ML-Dec ASL ML-Dec

Oracle CMLUβ Oracle CMLUβ Oracle CMLUβ Oracle CMLUβ Oracle CMLUβ Oracle CMLUβ

ASL Oracle 1.0 0.005 0.001 0.0 1.0 0.004 0.001 0.0 1.0 0.004 0.002 0.0
CMLUβ 0.005 1.0 0.001 0.0 0.004 1.0 0.0 0.0 0.004 1.0 0.001 0.0

ML-Dec Oracle 0.002 0.001 1.0 0.005 0.001 0.0 1.0 0.003 0.002 0.001 1.0 0.004
CMLUβ 0.0 0.0 0.005 1.0 0.0 0.0 0.003 1.0 0.0 0.0 0.004 1.0

An
im
al

Pl
an
t

Tr
ee

Su
ns
et

𝑪𝑴𝑳𝑼𝜶 𝑪𝑴𝑳𝑼𝜷𝑶𝒓𝒂𝒄𝒍𝒆

+

C
om
po
si
tio
n

+

C
om
po
si
tio
n

+

C
om
po
si
tio
n

Figure 6. Visualizing the universal perturbations and their compositions, generated using various methods on the NUS-WIDE dataset for
the ASL model. The arrows show which label-wise perturbations have been composed together to construct a new universal vector.

works could investigate the integration of label correlation
and using a soft loss penalty on non-targeted labels.

