
Appendix
We provide details that are omitted from the main paper.
• Appendix A: Experiment and dataset details
• Appendix B: Detailed descriptions of ViT and compared

methods.
• Appendix C: Additional results not presented in main

paper
• Appendix D: Discussion about further impacts of this

work

A. Experiment and Dataset Details
A.1. Experiment Details
VTAB-1K We employ AdamW optimizer [61] with a
batch size of 64 and utilize the cosine decay learning rate
scheduler. We train all methods with 100 epochs. The learn-
ing rate is tuned from [1e-3, 1e-2] and weight decay from
[1e-4, 1e-3]. The method-specific hyperparameter searching
grip is shown in Table 3, along with the tunable parameter
ranges (in millions). Since most method-specific hyperpa-
rameters affect the number of tunable parameters in the PEFT
methods, we set a cap on the tunable parameters for each
PEFT method to be less than or equal to 1.5% of the total
parameters in ViT-B/16, which is approximately equal to the
number of parameters in the Query, Key, and Value matrices
of a single MSA block. Consistent with the original VTAB-
1k paper [104], most PEFT studies [42–44, 55, 63, 63, 107]
don’t apply data augmentation as it’s challenging to iden-
tify a set of augmentations that uniformly benefits all 19
datasets3. To ensure that our results are directly comparable
and that any performance differences are attributable to the
methods themselves rather than data augmentation, we don’t
apply data augmentation.

Many-shot We also employ AdamW optimizer with a
batch size of 64 and a cosine decay learning rate scheduler.
The learning rate is tuned from [5e-4, 1e-3] and weight decay
keeps the same range of [1e-4, 1e-3]. We apply horizontal
flipping for CIFAR100, horizontal and vertical flipping for
Resisc, and no augmentation for Clevr. We train all methods
with 40 epochs.

Robustness Model CLIP models are trained on image-
caption pairs collected from the web. Given a dataset of
such pairs {(x1, s1), . . . , (xB , sB)}, these models learn an
image encoder g and a text encoder h that aim to max-
imize the similarity hg(xi), h(si)i between matching im-
age and caption embeddings while minimizing it for non-
matching pairs. For zero-shot classification, the models

3To demonstrate it, we apply simple data augmentations (Random-
ResizedCrop, RandomVerticalFlip and RandomHorizontalFlip) on three
datasets in each group, as shown in Table 4.

predict the class of an input image x from a set of k class
names C = {c1, . . . , ck} by matching x with captions de-
rived from these class names. Specifically, for each class
cj , a caption is formulated as sj = “a photo of a cj”. The
predicted class is then determined by selecting the one
whose caption embedding has the highest similarity with
the image embedding: ŷ = argmaxjhg(x), h(sj)i. Alterna-
tively, a weight matrix Wzero-shot 2 Rd⇥k can be constructed,
where each column is the embedding h(sj) corresponding
to class cj . The model’s output scores for each class are
then computed as f(x) = g(x)>Wzero-shot. To generate
Wzero-shot, we ensemble the 80 prompts provided by CLIP at
https://github.com/openai/CLIP.

Robustness Setup In section 3 and section 5, the fine-
tuning train set and test set are from the same data distri-
bution. In section 7, we fine-tune the CLIP model using
ImageNet-1K training data (100 shots) and subsequently
evaluate the fine-tuned model not only on the test set of
ImageNet-1K but also on four additional datasets with distri-
bution shifts: ImageNet-V2, ImageNet-R, ImageNet-S, and
ImageNet-A, as shown in Figure 7. Following [96], we set
a small learning rate as 3e-5 and weight decay as 5e-3. We
use a strong data augmentation following [107].

Computation We used a workstation with eight NVIDIA
RTX 6000 Ada GPUs, two AMD EPYC 9554 64-Core Pro-
cessors, and 800GB of RAM.

What do we not investigate? There are many aspects
that one can ask about PEFT. Our study focuses more on
their learning and prediction behaviors, not the computation-
specific properties like memory usage and FLOPS.

A.2. Dataset Details
VTAB-1K The processed VTAB-1K can be downloaded
from our official code base to ensure reproducibility.

Many-shot Datasets We perform 90/10 train-val split for
CIFAR-100, RESISC and Clevr-Distance. The split details
are provided in our code base for reproducibility. We apply
horizontal flipping for CIFAR100, horizontal and vertical
flipping for Resisc, and no augmentation for Clevr. All data
are normalized by ImageNet mean and standard deviation.

B. Background
B.1. Vision Transformer

Overview of ViT. Inspired by the recent success of
Transformer-based models [90] in NLP [95], Vision Trans-
former (ViT) [19] has become widely used in computer
vision. To handle 2D images, ViT divides an image

https:%20//github.com/openai/CLIP


(a) ImageNet [15] (b) ImageNetV2 [78] (c) ImageNet-R [34]

(d) ImageNet Sketch [93] (e) ImageNet-A [35]

Figure 7. Samples of the class lemon, from the fine-tuned dataset ImageNet and distribution shifts datasets (ImageNet-V2, ImageNet-R,
ImageNet-S, and ImageNet-A). The CLIP model is fine-tuned with PEFT on ImageNet and evaluated on distribution shifts datasets to
measure the robustness of fine-tuned models. The figures are modified based on [96].

Method Hyperparamters #Params (M)
VPT-Shallow Prompt Number: [5, 10, 50, 100, 200] 0.0003 ⇠ 0.153

VPT-Deep Prompt Number: [5, 10, 50, 100] 0.046 ⇠ 0.921
BitFit N/A 0.102
DiffFit N/A 0.140

LayerNorm N/A 0.038
SSF N/A 0.205

Pfeif. Adapter Adapter Scale Factor: [0.01, 0.1, 1, 10]
Adapter Bottleneck: [4, 8, 16, 32] 0.082 ⇠0.599

Houl. Adapter Adapter Scale Factor: [0.01, 0.1, 1, 10]
Adapter Bottleneck: [4, 8, 16, 32] 0.165 ⇠1.198

AdaptFormer Adapter Scale Factor: [0.05, 0.1, 0.2]
Adapter Bottleneck: [4, 16, 32] 0.082 ⇠0.599

RepAdapter RepAdapter Scale Factor: [0.1, 0.5, 1, 5, 10]
RepAdapter Bottleneck: [8, 16, 32] 0.239 ⇠0.903

Convpass
Convpass Scale Factor: [0.01, 0.1, 1, 10, 100]

Convpass Bottleneck: [8, 16]
Convpass Xavier Init: [True, False]

0.327 ⇠0.664

LoRA LoRA Bottleneck: [1, 8, 16, 32] 0.036 ⇠1.179

FacT_TT FacT Scale Factor: [0.01, 0.1, 1, 10, 100]
FacT Bottleneck: [8, 16, 32] 0.021 ⇠0.196

FacT_TK FacT Bottleneck: [16, 32, 64]
FacT Scale Factor: [0.01, 0.1, 1, 10, 100] 0.030 ⇠0.369

Table 3. Methods-specific hyperparameter searching grip for VTAB-1K experiment.

I 2 RH⇥W⇥C into N non-overlapping patches {I(n) 2
RP 2⇥C}Nn=1, where (H,W ) is the resolution of the input
image, C is the number of channels, N = HW/P

2 and
(P, P ) is the resolution of each patch. Each patch I(n) is
flattened and embedded into a D-dimensional vector x(n)

0

with a trainable linear projection. Incorporating the BERT
design approach [46], a “Class” token x(Class)

0 is prepended

to the sequence of embedded patches, whose output state at
the last Transformer layer is utilized as the image represen-
tation. Finally, position embeddings Epos 2 RD⇥(1+N) are
added to preserve positional information and form the input
Z0 2 RD⇥(1+N) to the ViT, which can be formulated by:

Z0 =
h
x(Class)
0 ,x(1)

0 ,x(2)
0 , · · · ,x(N)

0

i
+Epos (5)



Linear Full VPT-Shallow VPT-Deep BitFit DiffFit LayerNorm SSF Pfeif.
Adapter

Houl.
Adapter

Adapt-
Former

Rep-
Adapter Convpass LoRA FacT_TT Fact_TK

Simple DA 84.4 76.8 84.9 84.8 83.8 85.7 85.8 86.1 87.4 86.0 84.9 86.4 85.2 86.8 85.5 86.0
Default 86.6 89.9 88.7 91.5 90.5 90.2 89.7 89.8 91.5 92.1 91.8 92.5 92.1 92.6 91.8 92.5Caltech101

� -2.2 -13.1 -3.8 -6.7 -6.7 -4.5 -3.9 -3.7 -4.1 -6.1 -6.9 -6.1 -6.9 -5.8 -6.3 -6.5
Simple DA 67.5 57.8 69.0 71.1 70.7 73.7 73.5 68.4 72.7 72.6 70.6 71.5 71.8 73.0 72.2 71.9

Default 65.7 61.9 67.9 69.4 70.3 71.2 72.2 68.8 72.1 72.3 70.5 69.1 72.0 69.8 71.5 71.8DTD
� 1.8 -4.1 1.1 1.7 0.4 2.5 1.3 -0.4 0.6 0.3 0.1 2.4 -0.2 3.2 0.7 0.1

Simple DA 98.1 92.2 98.2 98.6 98.0 98.8 98.8 98.8 98.4 97.5 98.7 98.0 98.9 98.7 98.7 98.7
Default 98.9 97.4 99.1 99.1 98.9 99.2 99.1 99.1 99.2 98.0 99.2 99.1 99.3 99.1 99.3 99.1

Natural

Flower102
� -0.8 -5.2 -0.9 -0.5 -0.9 -0.4 -0.3 -0.3 -0.8 -0.5 -0.5 -1.1 -0.4 -0.4 -0.6 -0.4

Simple DA 87.3 91.0 88.4 92.0 92.0 91.7 91.9 92.5 92.1 92.5 92.3 93.1 92.7 92.8 93.3 92.8
Default 90.0 88.1 90.3 94.9 95.0 94.1 93.8 94.5 95.5 95.3 95.0 95.3 95.8 94.9 94.9 95.5EuroSAT

� -2.7 2.9 -1.9 -2.9 -3.0 -2.4 -1.9 -2.0 -3.4 -2.8 -2.7 -2.2 -3.1 -2.1 -1.6 -2.7
Simple DA 74.3 75.0 74.4 80.1 81.0 78.5 80.7 80.6 80.6 81.6 82.2 81.5 81.5 82.2 80.7 82.9

Default 74.9 81.6 77.2 84.2 85.3 80.9 83.0 83.2 85.3 86.5 86.5 86.0 85.9 85.9 85.0 86.0Resisc45
� -0.6 -6.6 -2.8 -4.1 -4.3 -2.4 -2.3 -2.6 -4.7 -4.9 -4.3 -4.5 -4.4 -3.7 -4.3 -3.1

Simple DA 74.5 73.6 74.7 76.3 76.3 76.7 76.4 76.4 77.3 75.6 77.0 77.1 76.8 76.2 75.3 77.0
Default 74.6 73.6 74.4 73.9 75.5 75.2 75.2 74.8 76.2 75.2 76.3 75.4 75.9 75.7 75.6 75.7

Specialized

Retinopathy
� -0.1 0.0 0.3 2.4 0.8 1.5 1.2 1.6 1.1 0.4 0.7 1.7 0.9 0.5 -0.3 1.3

Simple DA 22.6 29.9 24.3 29.6 28.7 29.0 29.0 27.9 28.9 22.9 30.9 31.4 30.5 30.3 32.5 28.4
Default 29.4 46.6 43.1 56.4 53.9 52.8 52.1 52.1 56.6 54.3 53.0 52.1 55.3 47.2 53.1 53.1dSpr-Ori

� -6.8 -16.7 -18.8 -26.8 -25.2 -23.8 -23.1 -24.2 -27.7 -31.4 -22.1 -20.7 -24.8 -16.9 -20.6 -24.7
Simple DA 49.8 48.7 49.4 52.7 52.6 54.7 52.7 50.6 53.9 53.6 53.2 52.2 51.3 52.9 52.0 53.3

Default 64.6 77.9 66.5 77.9 79.2 81.0 78.1 81.4 80.2 79.6 80.0 80.2 78.1 79.9 79.3 78.9KITTI
� -14.8 -29.2 -17.1 -25.2 -26.6 -26.3 -25.4 -30.8 -26.3 -26.0 -26.8 -28.0 -26.8 -27.0 -27.3 -25.6

Simple DA 15.0 24.2 12.8 21.2 21.9 23.4 18.8 24.5 25.1 26.4 24.8 26.9 25.7 24.5 23.4 18.2
Default 17.3 31.0 15.2 33.2 30.1 30.7 24.3 31.9 33.8 34.2 33.0 35.7 38.6 33.4 32.8 27.8

Structured

sNORB-Azim
� -2.3 -6.8 -2.4 -12.0 -8.2 -7.3 -5.5 -7.4 -8.7 -7.8 -8.2 -8.8 -12.9 -8.9 -9.4 -9.6

Table 4. We apply simple data augmentations (DA) (RandomResizedCrop, RandomVerticalFlip and RandomHorizontalFlip) on three datasets
in each group. Data augmentation does not benefit most of VTAB-1K datasets and thus, most recent PEFT papers [42–44, 55, 63, 63, 107]
skip it. Figure 8 shows examples of how some data augmentation transforms are harmful for a specific task. Therefore, to ensure that our
results are directly comparable to existing papers, we don’t apply data augmentation.

Symbol (Abbreviation) Definition
(H,W ) Resolution of input images

C Number of channels (input images)
P Resolution of patches
N Number of patches (tokens)
Nh Number of head in each Transformer layer
D Embedding dimension
Dh Embedding dimension for single-head attention
Lm m-th Transformer layer
M Number of Transformer layer

Zm�1 Input of m-th Transformer layer
ViT Vision Transformer
LN Layer Normalization

MSA Multi-head Self-Attention
MLP Multi-Layer Perceptron
FC Fully-connected layer

Table 5. Definitions of symbols and abbreviation used in Appendix B

As shown in the left part of Figure 9, a ViT typically
consists of M layers, denoted by {Lm}Mm=1. The input Z0

mentioned above is fed into the first layer L1, producing
the output Z1 = L1(Z0) = [x(Class)

1 ,x(1)
1 , · · · ,x(N)

1 ] 2
RD⇥(1+N), which maintains the same size as Z0. Namely,
Z1 comprises 1 +N feature tokens, and each corresponds
to the same column in Z0. Similarly, for m = 2, · · · ,M ,
each layer Lm takes the output of the previous layer as input
and generates the output, Zm = Lm(Zm�1). Finally, the
“Class” vector x(Class)

M in ZM serves as the image feature
for prediction. When dealing with classification tasks, the
predicted label ŷ = Head(x(Class)

M ) is generated through a

linear head (i.e., a fully-connected layer).
Details of each Transformer layer. As shown in the right
part of Figure 9, each Transformer layer consists of a Multi-
head Self-Attention (MSA) block, a Multi-Layer Perceptron
(MLP) block, and two Layer Normalization (LN) layers [4].
Formally, a Transformer layer Lm can be defined as

Z 0
m = MSA(LN (Zm�1)) +Zm�1

Zm = MLP (LN (Z 0
m)) +Z 0

m

(6)

where Zm�1 = [x(Class)
m�1 ,x(1)

m�1, · · · ,x
(N)
m�1] 2 RD⇥(1+N)

is the output of the preceding (m� 1)-th Transformer layer.
The MLP is applied to each column vector of Z 0

m indepen-



(a) Original

(b) Vertical Flipped

(c) Cropped (d) Resized

Figure 8. Example of augmented images from KITTI: (a) Original,
(b) RandomVerticalFlip, (c) RandomResizedCrop, (d) Resize only.
The KITTI task needs to predict the depth to the nearest vehicle
(car, van, or truck) in the image. RandomResizedCrop may crop
out the nearest vehicle. RandomVerticalFlip may make the task
more difficult.

dently.
In order to encapsulate multiple complex relationships

amongst different elements in the sequence, the MSA block
comprises Nh single-head self-attention blocks. For the i

th

single-head self-attention block, an generic input Z is first
projected into three matrices, namely Query Q(i), Key K(i),
and Value V (i)

Q(i) = W (i)
Q Z, K(i) = W (i)

K Z, V (i) = W (i)
V Z,

(7)

where W (i)
Q/K/V 2 RDh⇥D 4 where Dh is the embedding

dimension for a single head self-attention block and typi-
cally set to D/Nh. The i

th self-attention head in MSA is
formulated as

Attn(i)(Z) = V (i)⇥Softmax

0

@
K(i)>Q(i)

⌘

p
Dh

1

A 2 RDh⇥(1+N)

(8)

4For brevity, we ignore the layer index m for the projection matrices
WQ,WK ,WV , but each layer has its own projection matrices.

The outputs of all heads are concatenated and linearly
projected by a fully connected layer (FCattn) with weight
WO 2 RD⇥(Dh·Nh) as the output of the MSA block.

MSA(Z) = WO

⇥
Attn0(Z), . . . ,AttnNh(Z)

⇤
(9)

The MLP block can be defined as

MLP(Z) = GELU (ZW1 + b1)W2 + b2 (10)

where W1 2 RD⇥4D5, W2 2 R4D⇥D, b1 2 R4D, b2 2
RD are weights and biases for two FC layers (FC1 and
FC2) respectively.

Since PEFT methods often entail incorporating addi-
tional components to modify the intermediate features within
or between Transformer layers, we adopt the notation
{h1, . . . , h10} to denote the intermediate features in the un-
ravelled view of a Transformer layer (as depicted in Figure 9)
to facilitate a clearer illustration of the PEFT methods dis-
cussed in the subsequent section.

B.2. Evaluated Methods
In this section, we dive into the details of 12 state-of-the-art
PEFT approaches, categorized into three groups: Prompt-
based, Adapter-based, and Selective Parameter Tuning. We
will describe the distinctions and tradeoffs between them. A
consolidated overview of these approaches is summarized in
Table 6.

B.2.1. Prompt-based Methods
Prompt-based learning emerged in NLP as an effective
approach to adapt pre-trained models for downstream
tasks [54, 57]. The core concept involves augmenting the
model input with task-specific hints (prompts), which aid
the pre-trained model in addressing novel tasks with its ex-
isting knowledge. Hard prompts are human-interpretable
natural language hints, encompassing task instructions, in-
context examples, or supporting information. Alternatively,
soft prompts are continuous vector hints that are incorpo-
rated into the input embeddings of the input layers or hidden
states of other layers. Soft prompts are updated during the
fine-tuning process using gradient-based methods, guided by
the downstream task-specific loss functions, while the pre-
trained model itself remains fixed. The splendent success of
prompts in NLP has sparked a growing interest in adopting it
in computer vision [88, 102] and multi-modal domains [27].

In this paper, we investigate a prominent and strong
prompt-based method called Visual Prompt Tuning
(VPT) [42], which represents one of the early endeavours
in introducing prompts to computer vision. Specifically,
VPT-Shallow adds l prompts P0 2 Rl⇥D to the input of the

54 is the MLP ratio in ViT-B



Table 6. PEFT Methods Summary: Prompt-based and adapter-based methods incorporate additional parameters to modify features while
keeping the original backbone intact. However, these added parameters introduce additional inference overhead. In contrast, selective tuning
methods modify the backbone by updating selective parameters, thereby incurring no additional inference overhead.

Method What Tunable
Parameters

Hyper
Parameters

Modified
Type

Inference
Efficient

VPT-Deep h1 = [h1,P ] P 2 Rl⇥D l: Number of prompts Feature #

AdaptFormer h9 = h9 +Adapter(h7) Wdown /up 2 Rr⇥D/D⇥r in Adapter
s: Scale factor in Adapter
r: Bottleneck dimension Feature #

Pfeif. Adapter h9 = Adapter(h9) Wdown /up 2 Rr⇥D/D⇥r in Adapter
s: Scale factor in Adapter
r: Bottleneck dimension Feature #

Houl. Adapter h5 = Adapter1(h5)
h9 = Adapter2(h9)

W 1
down /up 2 Rr⇥D/D⇥r in Adapter1

W 2
down /up 2 Rr⇥D/D⇥r in Adapter2

s: Scale factor in Adapter
r: Bottleneck dimension Feature #

Convpass h5 = Convpass1(h2) + h5

h9 = Convpass2(h7) + h9

W 1
conv2d 2 Rr⇥r⇥k⇥k

W 1
down /up 2 Rr⇥D/D⇥r in Convpass1

W 2
conv2d 2 Rr⇥r⇥k⇥k

W 2
down /up 2 Rr⇥D/D⇥r in Convpass2

s: Scale factor in Convpass
r: Bottleneck dimension
k: Kernel size of conv2d

Feature #

RepAdpater h2 = RepAdapter1(h2)
h7 = RepAdapter2(h7)

W 1
conv1d 2 Rr⇥D

b1 2 Rr in RepAdapter1

W 2
conv1d 2 RD⇥ r

G

b2 2 RD in RepAdapter2

s: Scale factor in RepAdapter
r: Bottleneck dimension
G: Number of groups

Feature #

LayerNorm h2 = LayerNorm1(h1)
h7 = LayerNorm2(h6)

W 1(2), b1(2) 2 RD in LayerNorm1(2) N/A Backbone !

BitFit Fine-tune all bias terms
in the network

b1(2) 2 RD in LayerNorm1(2)

bQ/K/V 2 RD in Q/K/V
bFCattn 2 RD in FCattn

b1 2 R4D, in FC1, b2 2 RD in FC2

N/A Backbone !

DiffFit
• LayerNorm + BitFit • All tunable parameters

in LayerNorm & BitFit N/A Backbone !

• h5 = �1 · h5

h9 = �2 · h9
• �1, �2 2 RD

SSF
h2 = SSF2(h2), h3 = SSF3(h3)
h5 = SSF5(h5), h7 = SSF7(h7)
h8 = SSF7(h8), h9 = SSF9(h9)

W 2,5,7,9 2 RD, b2,5,7,9 2 RD

W 3 2 R3D, b3 2 R3D

W 8 2 R4D, b8 2 R4D
N/A Backbone !

LoRA h3 = LoRA(h2) + h3 W
Q/K/V
down/up 2 Rr⇥D/D⇥r in LoRA r: Bottleneck dimension Backbone !

FacTTT(TK)

h3 = FacTTT(TK)(h2) + h3

h5 = FacTTT(TK)(h4) + h5

h8 = FacTTT(TK)(h7) + h8

h9 = FacTTT(TK)(h8) + h9

U 2 RD⇥r,V 2 RD⇥r ,
⌃ 2 R12L⇥r⇥r in FacTTT s: Scale factor in FacTTT(TK)

r: Bottleneck dimension
Backbone !

U 2 RD⇥r,V 2 RD⇥r ,
A 2 R12L⇥r,B 2 Rr⇥r⇥r in FacTTK

first Transformer layer Z0 and the output P̃0 of P0 serves
as the input for the next layer as depicted in Equation 11.
VPT-Shallow can be perceived as the addition of learnable
pixels to the original images. On the other hand, VPT-Deep
inserts l prompts {Pm 2 Rl⇥D}Mm=0 to the input of every
Transformer layer Zm but their outputs are discarded at the
end of the layer as illustrated in Equation 12.

[P̃1,Z1] = Lm([P0,Z0])

[P̃m,Zm] = Lm([P̃m�1,Zm�1]) m = 2, 3, . . . ,M
(11)

[_,Zm] = Lm([Pm�1,Zm�1]) m = 1, 2, 3, . . . ,M
(12)

Throughout the adaptation process, the pre-trained model



LayerNorm

Attention

FCattn

Q K V

h1 ≡ Zm-1

h2

h3

h4

h5

MSA

MLP

LayerNorm

FC1

FC2

h6 ≡ Z'm

h7

h8

h9

h10 ≡ Zm

Transformer Layer L1

Transformer Layer LM

Transformer Layer L2

Head

Z0

cls ...

Z1

cls ...

ZM

cls ...

...

Transformer Layer Lm

...

Figure 9. An overview of a Transformer block in ViT. We adopt the
notation {h1, . . . , h10} to denote the intermediate features within
a Transformer block to facilitate a clearer illustration of the PEFT
methods discussed in subsection B.2.

is frozen and no additional weights are introduced to the
model, thereby preserving the model’s original behaviour.
During the forward pass, the output Zm of layer m is
changed because of the interaction between Zm�1 and
Pm�1 (or P̃m�1) in the MSA block. Thus, the output fea-
ture is adapted to the downstream tasks by iteratively tuning
the prompts through gradient descent.

B.2.2. Adapter-based Methods
Adapter-based methods typically introduce additional train-
able parameters into a frozen pre-trained model to facil-
itate learning of downstream tasks [54]. Initially devel-
oped for multi-domain adaptation [76, 77] and continual
learning [66, 80], the idea of Adapters is subsequently em-
braced by Houlsby et al. [36] in the NLP domain to adapt
Transformer-based networks for downstream tasks, and it
also has garnered increasing interest in the computer vision
field [102]. In this comparative analysis, we concentrate
onfive popular Adapter-based methods, encompassing the
original Adapter, along with variants focusing on adjusting
the positions of Adapters [11, 74], introducing visual induc-
tive biases [43], as well as employing re-parameterization
to reduce the number of trainable parameters and inference
latency [63].

Houl. Adapter [36] inserts two lightweight bottleneck-
structured modules into each Transformer layer: one after the
MSA block and the other after the MLP block. As depicted
in Figure 10a, the Adapter is composed of a down-projection
layer with Wdown 2 Rr⇥D, a nonlinear activation function
�, an up-projection layer with Wup 2 RD⇥r, a scaling factor
s and a skip-connection. To limit the number of trainable
parameters, the bottleneck dimension is much smaller than
the feature dimension r ⌧ D. Formally, Houl. Adapter can
be defined as:

h5 = Adapter1(h5) h9 = Adapter2(h9) (13)
Adapter(h) = s ·Wup�(Wdown h) + h (14)

Pfeif. Adapter [74] is a more efficient variant that
introduces the Adapter solely after the MLP block, a strat-
egy that has demonstrated effectiveness in recent stud-
ies [37]. Pfeif. Adapter can be defined formally as h9 =
Adapter(h9) where Adapter follows Equation 14.

AdaptFormer [11] proposed to insert the Adapter
in parallel with the MLP block, which differs from the
sequential design of Houl. and Pfeif. Adapter. The ra-
tionale behind this parallel design lies in the belief that
the domain-specific features generated by the Adapter can
complement the domain-agnostic features derived from the
original MLP block, leading to an improved feature en-
semble [85]. Formally, AdaptFormer can be defined as
h9 = h9 + Adapter(h7) where Adapter follows Equa-
tion 14.

ConvPass (Convolutional By-Passes) [43] addresses
the concern that many existing Adapters lack visual induc-
tive bias, potentially limiting their performance for down-
stream vision tasks with limited data. To this end, the au-
thors introduce a convolutional bottleneck module, running
in parallel with the MSA or(and) MLP block. This module
encompasses a 1⇥ 1 convolution reducing the channel with
Wdown 2 Rr⇥D, a 3 ⇥ 3 convolution with the same input
and output channel, a 1⇥ 1 convolution expanding the chan-
nel Wup 2 RD⇥r, two nonlinear functions � and a scaling
factor s, as shown in Figure 10b. The authors argue that
Convpass is more efficient at capturing visual information in
low-data scenarios due to its hard-coded locality of convolu-
tional layers. The formal definition of Convpass is shown in
Equation 15.

h5 = Convpass1(h2) + h5 h9 = Convpass2(h7) + h9

Convpass(h) = s ·Wup�(Conv2d(�(Wdown h)))
(15)



Nonlinearity

S

(a) Adapter

1x1 Conv

Nonlinearity

3x3 Conv

Nonlinearity

1x1 Conv

S

(b) Convpass

S

(c) RepAdapter

Figure 10. Comparison of three Adapter structures.

RepAdapter [63] found that the removal of the non-
linear function in the Adapter does not result in performance
degradation for vision tasks. In light of this finding, the au-
thors propose a linear Adapter with group-wise transforma-
tion [62] and sequentially added two of these linear Adapters
to both MSA and MLP blocks. Owing to the sequential
placement of the RepAdapter and its inherent linearity, the
additional parameters can be re-parameterized to the original
MSA or MLP block after training, thereby incurring zero
additional costs during inference. RepAdapter is illustrated
in Figure 10c and formally defined in Equation 16.

h5 = RepAdapter1(h2) h7 = RepAdapter2(h7)

RepAdapter(h) = s · �up(�down (h)) + h

h̃ = �down (h) = Wdown h

�up(h̃) = [Wg1h̃g1, . . . ,WgGh̃gG]

(16)

where Wdown 2 Rr⇥D, h̃g(1,...,G) 2 R r
G⇥(N+1) is the

features splitted from h̃ 2 Rr⇥(N+1) and G is the number
of groups in group-wise transformation [62]. Wg(1,...,G) 2
RD

G⇥ r
G is the projection weight matrix.

B.2.3. Selective Parameter Tuning Methods
The methods falling within this category aim to selectively
update the parameters of a pre-trained model for downstream
tasks. Within transfer learning, two prominent strategies,
namely full fine-tuning and linear probing [48, 111], rep-
resent the two extremes of this category. Full fine-tuning

updates all the model parameters end-to-end based on the
new dataset while linear probing treats the pre-trained model
as a feature extractor and only updates the prediction heads
while keeping the backbone frozen. Although full fine-tuning
generally exhibits superior performance compared to linear
probing [104], it possesses certain limitations that may hin-
der its practicality in real-world production settings. Firstly,
it requires running gradient descent for all parameters and
necessitates storing a separate fine-tuned model for each
task, incurring significant computational, memory, and stor-
age overhead. These challenges become more salient with
Transformer-based models whose parameters grow exponen-
tially. Secondly, full fine-tuning may distort pre-trained fea-
tures and underperform linear probing in out-of-distribution
(OOD) scenarios [50].

To cope with the above issues, a cohort of PEFT methods
has emerged under this category. In addition to the two
common approaches mentioned above, our investigation
encompasses seven methods that can be further categorized
into two groups: direct selective tuning [7, 97, 103], which
involves the direct modification of selective weights, and
efficient selective tuning [37, 44, 55], which approximates
the weight updates with low-rank factors.

Notably, an extra advantage of methods in this category is
that they introduce no additional inference latency, making
them particularly favourable when inference efficiency is a
priority. Methods within the direct selective tuning group
abstain from introducing any new modules, thus inherently
avoiding extra inference latency. Meanwhile, for methods in



the efficient selective tuning group, the added modules can
often be seamlessly integrated into weights of the pre-trained
models through the re-parameterization techniques [18, 41],
thereby ensuring the absence of increased inference latency
as well.

Direct Selective Tuning

BitFit [103] is a simple yet effective method that only
tunes the bias parts of the pre-trained model. For each Trans-
former layer in ViT, BitFit updates the bias terms in the QKV
projections and the FC layer in the MSA block, two FC lay-
ers in the MLP block and two LN blocks. It also updates the
bias in the projection for patch embedding. The original au-
thors underscore BitFit’s capability to achieve performance
comparable to full fine-tuning or even surpass it under low
and medium-data scenarios in BERT models [46].

LayerNorm [7] represents another simple but strong
baseline that solely tunes the two LN blocks in each Trans-
former layer - one before the MSA block and another be-
fore the MLP block. Given that each LN block contains
merely two trainable parameters {WLN , bLN} 2 RD, LN-
tune stands out as an exceedingly light-weight approach
compared to other PEFT methods. For instance, ViT-B/16
(⇠86M parameters) has only ⇠38K LN parameters, account-
ing for ⇠0.04% of the total parameters.

DiffFit [97] is a recently proposed PEFT strategy de-
signed for adapting large pre-trained diffusion models to the
new domains. DiffFit exclusively fine-tunes the bias terms
and the LN blocks within the network. Furthermore, it in-
serts learnable scale factors � to shift the features after the
MSA and the MLP blocks, as shown in Equation 17. Con-
sequently, DiffFit can be regarded as a combination of the
BitFit and Ln-Tune, incorporating additional feature shift
factors.

h5 = �1 · h5

h9 = �2 · h9
(17)

Efficient Selective Tuning

LoRA (Low-Rank Adaptation) [37] drew inspiration
from recent investigations demonstrating that the learned
over-parametrized models in fact reside on a low intrin-
sic dimension [1, 52]. Building upon this insight, the au-
thors hypothesize that the change in weights during model
adaptation also exhibits a low intrinsic rank and injects
trainable low-rank decomposition matrices to approximate
the weight updates. The LoRA update methodology is
strategically applied to the Query/Value projection weights

WQ/V 2 RD⇥D within the MSA block. Concretely, the
weight updates are approximated as WQ/V +�WQ/V =

WQ/V +WQ/V
down WQ/V

up where WQ/V
down/up 2 RD⇥r/r⇥D and

rank r ⌧ D. The authors use a random Gaussian initial-
ization for WQ/V

up and zero for WQ/V
down so that �WQ/V =

WQ/V
down WQ/V

up is zero at the beginning of training. The
formal definition of LoRA is articulated in Equation 18,
utilizing the notations delineated in Figure 9.

h3 = LoRA(h2) + h3

h3 = [Q,K,V ]

LoRA(h2) = [WQ
downW

Q
uph2, 0,W

V
downW

V
uph2]

(18)

FacT (Factor Tuning) [44] is inspired by the recent
advances in Transformer compression [92, 106]and ex-
ploited the low-rank update paradigm (e.g., LoRA) to the
extreme. While LoRA posits that the update for an indi-
vidual weight matrix manifests a low-rank characteristic
during fine-tuning, FacT advances the proposition that the
weight updates spanning different matrices can also be ef-
fectively approximated using low-rank decomposition matri-
ces. Specifically, FacT encapsulates the four weight ma-
trices WQ/K/V/O 2 RD⇥D in the MSA block and the
two weight matrices W1 2 RD⇥4D, W2 2 R4D⇥D in
the MLP block into a single WFacT 2 R12M⇥D⇥D tensor
where M is the number of Transformer layer. The update of
WFacT , �WFacT , can be decomposed into several factors
to promote parameter efficiency. To this end, the authors
leverage the well-established Tensor-Train (TT) [72]and the
Tucker (TK) [14] format to decompose �WFacT . FacTTT
and FacTTK are used to denote different decomposition for-
mats for FacT and their formal definitions can be found in
Equation 19.

FacTTT : �WFacT = s ·⌃⇥2 U
> ⇥3 V

> (19)

FacTTK : �WFacT = s ·A⇥1 B
> ⇥2 U

> ⇥3 V
>

(20)

where U 2 RD⇥r
,V 2 RD⇥r

,⌃ 2 R12L⇥r⇥r
,B 2

R12L⇥rA 2 Rr⇥r⇥r and the ⇥j denotes mode-j product
and s is the scaling factor.

Since �WFacT contains the updates for
WQ/K/V/O,W1/2, the modified forward pass inher-
ently influences h3, h5, h8, h9. Let’s consider h5 for
elucidation. Once the weight update �WFacT is calculated
with FacTTT(TK) in Equation 19, the corresponding update
for WO, �WO, is extracted from �WFacT . Similar to the
modified forward pass of LoRA, h5 = h4�WO + h5.

SSF (Scale & Shift deep Features) [55] employs linear
transformations to adapt the intermediate features extracted



Figure 11. Performance gain for PEFT methods by turning drop-
path-rate on.

by a pre-trained model. Motivated by the feature modulation
methods [39, 73], SSF is designed to accommodate the dis-
tribution difference between the upstream and downstream
datasets. Specifically, SSF modulates the features residing
at h2, h3, h5, h7, h8, h9 by incorporating scale and shift fac-
tors. To demonstrate the mechanism of SSF, let’s consider
h5 2 R(N+1)⇥D as an illustrative example and other fea-
tures can similarly undergo the same transformative process.
Formally, the modulated h5 is formulated as follows.

h5 = SSF5(h5) = w5 � h5 + b5 (21)

where w5 2 RD, b5 2 RD are the scale and shift factors
affiliated with the SSF module attributed to h5, and � is
the dot product. It is noteworthy that each modulated fea-
ture has its own SSF module with corresponding scale and
shift factors. The modification details for other features are
summarized in Table 6.

C. More Detailed Results
Drop-path-rate. Learning with low-shot data is prone
to over-fitting. We find that if the drop path rate — which
stochastically drops a transformer block per sample [38]
— is set not as default (i.e., nonzero), all the methods can
benefit from such a regularization. Figure 11 shows the
performance gain by tuning the drop-path-rate on compared
with the default 0.

More results on prediction similarity analysis. Fig-
ure 13 shows the prediction analysis discussed in section 4
for all the datasets in VTAB-1K. It is expected that their pre-
dictions are similar for datasets with very high accuracy, such
as Flowers102 (avg 99.1%) and Caltech101 (avg 91.4%). Be-
yond them, we find that most PEFT methods show diverse
predictions in other datasets in VTAB-1K.

Prediction similarity within the same PEFT group. To
verify if methods within the same PEFT group share more
prediction similarity, we plotted the prediction overlap for
adapter-based methods, selective-tuning methods, and meth-
ods from different groups. As shown in Figure 12, methods
within the same group share slightly more prediction simi-
larity than those from different groups, but they still exhibit
distinct predictions. Figure 3a in the main paper also sup-
ports this observation. Methods are grouped based on the
categories defined in subsection 2.2. If methods within the
same group had very high similarities, we would see bright
squares, which are only slightly evident around BitFit, Diff-
Fit, LayerNorm, and SSF.

WiSE PEFT results for all distribution shift datasets.
We provide detailed WiSE PEFT performance for each dis-
tribution shift dataset in Figure 14. WiSE improves both
the robustness and the in-distribution performance of PEFT
methods. Interestingly, even though full fine-tuning is gener-
ally less robust than PEFT methods, applying WiSE allows
it to achieve better performance in both target distribution
and distribution shift data.

Performance comparison between DINOv2 and IN21k.
To compare the performance of DINOv2 and IN21k, we
selected several PEFT methods and datasets from VTAB-1K.
The results presented in Table 7 reveal several interesting
findings:

(1) Improved Linear Probing Performance: Linear
probing generally shows improved results with DINOv2,
indicating that its extracted features are more robust and
discriminative than those from IN21k.

(2) Deteriorated Full Fine-Tuning Performance: Con-
versely, full fine-tuning performance significantly worsens
with DINOv2, suggesting that models fully fine-tuned on
DINOv2 are more susceptible to overfitting.

(3) Adapter-Based Methods Performance: Among the
three adapter-based methods evaluated—Houl. Adapter,
AdaptFormer, and Convpass—we observe performance en-
hancements in most datasets for AdaptFormer and Convpass.
In contrast, Houl. Adapter exhibits significant degradation
across all datasets. This disparity may be attributed to archi-
tectural differences: AdaptFormer and Convpass insert their
adapter modules in parallel with existing modules such as
Multi-Head Self-Attention (MSA) and/or Multi-Layer Per-
ceptron (MLP), whereas Houl. Adapter inserts its adapter
sequentially after the MSA and MLP layers. We hypothesize
that the sequential design of Houl. Adapter leads to more
substantial alterations of intermediate features compared
to the parallel design, potentially explaining the observed
decrease in performance.



(a) Adapter-based methods (b) Selective tuning methods (c) Methods from different groups

Figure 12. Prediction overlap for the 5K most confident samples. Although methods from the same group share slightly more prediction
overlap than methods from other groups, they still have quite different predictions

Linear Full SSF Houl.
Adapter

Adapt-
Former Convpass LoRA

Natural

Caltech101
Dinov2 89.8 83.2 90.3 22.1 92.5 91.7 92.3
IN21k 86.6 89.9 89.8 92.1 91.8 92.1 92.6
� 3.2 -6.7 0.5 -70.0 0.7 -0.4 -0.3

DTD
Dinov2 74.9 45.2 77.0 14.6 78.8 77.0 78.4
IN21k 65.7 61.9 68.8 72.3 70.5 72.0 69.8
� 9.2 -16.7 8.2 -57.7 8.3 5.0 8.6

Pets
Dinov2 93.4 68.7 92.6 7.1 94.0 92.3 94.1
IN21k 89.3 85.8 91.4 91.7 91.8 91.3 90.5
� 4.1 -17.1 1.2 -84.6 2.2 1.0 3.6

Sun397
Dinov2 55.1 23.9 52.5 2.6 56.5 56.1 55.7
IN21k 53.2 36.8 56.5 55.4 56.7 55.9 55.5
� 1.9 -12.9 -4.0 -52.8 -0.2 0.2 0.2

Specialized

Camelyon
Dinov2 83.2 77.9 83.9 77.1 84.4 86.3 85.4
IN21k 83.1 81.6 86.1 88.7 86.8 87.7 87.5
� 0.1 -3.7 -2.2 -11.6 -2.4 -1.4 -2.1

EuroSAT
Dinov2 89.2 66.9 93.9 60.2 93.8 93.8 94.2
IN21k 90.0 88.1 94.5 95.3 95.0 95.8 94.9
� -0.8 -21.2 -0.6 -35.1 -1.2 -2.0 -0.7

Resisc45
Dinov2 78.8 25.9 82.0 24.5 88.6 87.6 84.2
IN21k 74.9 81.6 83.2 86.5 86.5 85.9 85.9
� 3.9 -55.7 -1.2 -62.0 2.1 1.7 -1.7

Retinopathy
Dinov2 75.3 73.6 76.0 73.6 76.0 76.0 75.5
IN21k 74.6 73.6 74.8 75.2 76.3 75.9 75.7
� 0.7 0.0 1.2 -1.6 -0.3 0.1 -0.2

Structured

Clevr-Count
Dinov2 47.5 27.3 71.2 38.1 91.2 87.8 89.8
IN21k 37.5 56.2 80.1 82.9 82.9 82.3 82.9
� 10.0 -28.9 -8.9 -44.8 8.3 5.5 6.9

DMLab
Dinov2 44.1 30.7 51.8 39.1 51.8 53.1 54.5
IN21k 36.5 48.2 53.0 53.8 52.8 53.8 51.8
� 7.6 -17.5 -1.2 -14.7 -1.0 -0.7 2.7

KITTI
Dinov2 60.3 47.1 81.0 46.8 83.4 82.6 83.8
IN21k 64.6 77.9 81.4 79.6 80.0 78.1 79.9
� -4.3 -30.8 -0.4 -32.8 3.4 4.5 3.9

dSpr-Ori
Dinov2 47.2 17.5 56.1 10.0 57.9 55.6 57.2
IN21k 29.4 46.6 52.1 54.3 53.0 55.3 47.2
� 17.8 -29.1 4.0 -44.3 4.9 0.3 10.0

Table 7. Performance comparison between DINOv2 and IN21k.

Figure 1a details. This figure illustrates the relative per-
formance compared to linear probing (⇥) on VTAB-1K. The
range between the highest and lowest accuracy across 14

PEFT methods is represented by •-•, while (⌅) denotes the
performance of full fine-tuning.



(a) Caltech101 (b) Camelyon (c) Cifar100 (d) Clevr-Count

(e) Clevr-Dist (f) DMLab (g) dSpr-Loc (h) dSpr-Ori

(i) dSpr-Ori (j) dSpr-Ori (k) DTD (l) EuroSAT

(m) Flower102 (n) KITTI (o) Pets (p) Resisc45

(q) Retinopathy (r) sNORB-Azim (s) sNORB-Elev (t) Sun397

(u) SVHN

Figure 13. Prediction similarity analysis on other datasets.



(a) ImageNet-A (b) ImageNet-R

(c) ImageNet-S (d) ImageNet-V2

Figure 14. WiSE PEFT performance on all distribution shift datasets. Target distribution vs. distribution shifts

Figure 1c details. The X-axis represents the accuracy
on ImageNet-1K, while the Y-axis shows the distribution
shift accuracy (averaged across ImageNet-V2, ImageNet-
S, ImageNet-R, and ImageNet-A). The cyan squares (⌅)
represent the zero-shot performance of the CLIP model, and
stars (?) denote the performance of fine-tuned models. Each
curve corresponds to the WiSE+PEFT method, with dots
• indicating different mixing coefficients ↵ as described in
section 7.

Figure 2 details. For each dataset in VTAB-1K, 15 meth-
ods (14 PEFT methods plus linear probing) are ranked by
accuracy. Within each dataset group (e.g., Natural), the el-
ement (i, j) in the ranking frequency matrix indicates how
often method i ranks jth. For instance, in the Natural group
matrix, the entry (1, 3) equals 2, meaning DiffFit ranked 3rd
in two datasets within this group. The row sums correspond
to the total number of datasets in each group (e.g., 7 datasets

for the Natural group). Methods are sorted by their aver-
age rank (shown in brackets), and the parameters column
indicates the number of trainable parameters in millions.

Figure 3a details. Each entry (i, j) in the prediction
similarity matrix represents the percentage of test samples
for which methods i and j made the same prediction. The
diagonal entries are always 1, indicating perfect agreement
with themselves. To compute (i, j), predictions from models
fine-tuned by methods i and j are compared, with (i, j)
equaling the number of matching predictions divided by the
total test samples.

Figure 3b details. The Venn diagrams are generated by
fine-tuning a pre-trained model on CIFAR100 (VTAB-1K)
using LoRA, SSF, and Adapter methods. For Figure 3b(a),
we selected the correct predictions from the top 5K most
confident samples for each method and visualized the overlap



among the three methods. For Figure 3b(b), we did the
same for the wrong predictions, selecting from the 5K least
confident samples.

Figure 4 details. For each VTAB-1K dataset, the worst-
performing PEFT method serves as the baseline (⇥). Each
represents the relative performance of other PEFT methods
compared to this baseline. An ensemble prediction ( ) is
generated based on the average logits of all PEFT methods
for each test sample.

Figure 5 details. Different colors represent various PEFT
methods. Each • along a curve (corresponding to a single
PEFT method) indicates the accuracy at a specific tunable pa-
rameter size, allowing us to observe how the size of tunable
parameters impacts accuracy.

Figure 6 details. Each sub-figure displays accuracy on
the Y-axis, with columns representing linear probing (left),
the best PEFT methods (middle), and full fine-tuning (right).
Sub-figures (a) and (b) correspond to VTAB-1K (low-shot),
while (c) and (d) correspond to many-shot settings. Different
colors represent distinct datasets.

D. Broader Impacts

Our study provides a unifying study of PEFT in visual recog-
nition. We expect it to serve as a valuable practical user
guide to benefit society. Specifically, fine-tuning large mod-
els needs significant computation. A unifying study of PEFT
will ease end-users to apply more parameter-efficient and
computation-efficient ways for fine-tuning. To our knowl-
edge, our paper does not introduce any additional negative
societal impacts compared to existing papers on PEFT.


	Introduction
	Background
	Large pre-trained models
	Parameter-Efficient Fine-Tuning (PEFT)
	Related work and comparison

	PEFT Methods in Low-Shots Regime
	Different PEFT Approaches Offer Complementary Information
	PEFT Methods in Many-Shot Regime
	Why Do PEFT Methods Work?
	How Robust are PEFT Methods to Distribution Shifts? 
	Conclusion
	Experiment and Dataset Details
	Experiment Details
	Dataset Details

	Background
	Vision Transformer
	Evaluated Methods
	Prompt-based Methods
	Adapter-based Methods
	Selective Parameter Tuning Methods


	More Detailed Results
	Broader Impacts

