
GBlobs: Explicit Local Structure via Gaussian Blobs for Improved Cross-Domain

LiDAR-based 3D Object Detection

Supplementary Material

This supplementary material details the experimental

setup (Suppl. A), presents further findings on the influence

of local and global features on LiDAR-based 3D object de-

tection (Suppl. B), and provides a qualitative analysis of our

results (Suppl. C).

A. Experimental Setup

To ensure reproducibility (besides the provided source code),

we present detailed information about our experimental setup

in Tab. 1. If not specified otherwise, we use default settings

from OpenPCDet1.

Our models were trained on the entire KITTI and

nuScenes training sets, along with 20% of the Waymo dataset

(a standard practice in the field). In all our experiments (ex-

cept KITTIÑWaymo in Tab. 3 of the main manuscript),

we trained the models to simultaneously predict Cars/Vehi-

cles, Pedestrians, and Cyclists. For fair comparison with 3D-

VF [6], we trained the detector to predict only Cars/Vehicles

in KITTIÑWaymo. We employed standard data augmen-

tation techniques, including random sampling, point cloud

rotation, scaling, and flipping.

We use the KITTI metric [4] for evaluation (except in

Tab. 6b of the main manuscript), reporting Average Pre-

cision (AP) on Bird’s-eye View (BEV) / 3D views at 40

recall positions. For the in-domain Waymo evaluation in Tab.

6b (main manuscript), we report LEVEL 1 /LEVEL 2 AP

(standard Waymo metric). We use Intersection over Union

(IoU) thresholds of 0.7, 0.5, and 0.5 for Cars, Pedestrians,

and Cyclists, respectively. KITTIÑWaymo in Tab. 3 (main

manuscript) uses an IoU threshold of 0.5 for Cars to ensure

fair comparison. We utilize the complete validation sets of all

datasets to assess the performance of our proposed method.

B. Height Bias

Autonomous driving datasets define different reference

points for LiDAR point clouds, e.g. Waymo [7] aligns

the height axis origin with the road, while KITTI [4] and

nuScenes [1] use the vehicle’s mounting point. This inher-

ently introduces bias into the network. A common approach

is to manually align source and target point clouds by shift-

ing them to a shared origin [10, 11]. Otherwise the detectors

fail catastrophically as demonstrated in Tab. 2. Although this

is not a critical issue in our controlled setting, a detector

trained with such bias could pose a significant risk in real-

world applications. Our GBlobs are not affected by biases

1https://github.com/open-mmlab/OpenPCDet/
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associated with global input features, as they encodes local

point cloud geometry.

C. Qualitative Results

In order to depict benefits of training a model with our

GBlobs as input features, we conduct following qualitative

analysis. We apply a nuScenes trained Voxel R-CNN detec-

tor to a challenging KITTI scene featuring a slightly curved

road. Such detectors, trained with standard global input fea-

tures, often predict false positives, even in areas without

object indications.

A similar phenomenon can be observed with the SEC-

OND [9] detector employed in the KITTIÑWaymo bench-

mark in Fig. 3. It is noteworthy that SECOND, trained on

KITTI, a dataset consisting primarily of small and mid-size

European sedans, has never seen anything that resembles

aerial work platforms during training. Nevertheless, when

trained with global features and applied on Waymo (which

has such object labeled as Vehicles), it manages to produce a

detection at this location with high certainty (orange arrows

in Fig. 3a). We hypothesize that the detector’s prediction was

influenced by specific points at specific heights. Given its

training, such detections are unexpected. This raises the ques-

tion of how many other detections, which are false positives,

such detector produces. A model trained with our GBlobs

did not make such uneducated guess (Fig. 3b).
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Table Dataset

Detector

Name Range Voxel Size
Optimizer BS E

Name LR WD

Tab. 2
Waymo [7] Voxel R-CNN [3] r´75.2 , ´75.2 , ´2, 75.2 , 75.2 , 4s r0.1 , 0.1 , 0.15s Adam 1 ˆ 10

´2
1 ˆ 10

´3
32 30

nuScenes [1] Voxel R-CNN [3] r´75.2 , ´75.2 , ´2, 75.2 , 75.2 , 4s r0.1 , 0.1 , 0.15s Adam 1 ˆ 10
´2

1 ˆ 10
´3

32 30

Tab. 3

KITTI [4] PointPillars [5] r 0.0 , ´39.68, ´2, 69.12, 39.68, 4s r0.16, 0.16, 6.0 s Adam 3 ˆ 10
´3

1 ˆ 10
´2

32 80

KITTI [4] SECOND [9] r 0.0 , ´40.0 , ´3, 70.4 , 40.0 , 1s r0.16, 0.16, 6.0 s Adam 3 ˆ 10
´3

1 ˆ 10
´2

32 80

KITTI [4] Part-A2 [2] r 0.0 , ´40.0 , ´3, 70.4 , 40.0 , 1s r0.16, 0.16, 6.0 s Adam 1 ˆ 10
´2

1 ˆ 10
´2

32 80

Tab. 4 ˚ CenterPoint [12] r´75.2 , ´75.2 , ´3, 75.2 , 75.2 , 5s r0.10, 0.10, 0.20s Adam 3 ˆ 10
´3

1 ˆ 10
´2

32 30

Tab. 5 nuScenes [1] Voxel R-CNN [3] r´75.2 , ´75.2 , ´2, 75.2 , 75.2 , 4s r0.1 , 0.1 , 0.15s Adam 1 ˆ 10
´2

1 ˆ 10
´3

32 30

Tab. 6 KITTI [4] SECOND [9] r 0.0 , ´40.0 , ´3, 70.4 , 40.0 , 1s r0.16, 0.16, 6.0 s Adam 3 ˆ 10
´3

1 ˆ 10
´2

32 80

Tab. 6a Waymo [7] DSVT [8] r´74.88, ´74.88, ´2, 74.88, 74.88, 4s r0.32, 0.32, 6.0 s Adam 3 ˆ 10
´3

5 ˆ 10
´2

24 30

Tab. 6b Waymo [7] Voxel R-CNN [3] r´75.2 , ´75.2 , ´2, 75.2 , 75.2 , 4s r0.1 , 0.1 , 0.15s Adam 1 ˆ 10
´2

1 ˆ 10
´3

32 30

Table 1. Complete experimental setup for each table from the main manuscript. We specify the source domain, where ˚ specifies all except

the target dataset for our multi-source domain generalization. We report LiDAR point cloud range, voxel size, optimizer parameters (learning

rate (LR), weight decay (WD)), batch size (BS) and the number of epochs (E) used for training.

z-alignment Method Car Pedestrian Cyclist mAP

✓
Voxel R-CNN [3] 66.93/28.80 23.39/18.65 19.23/15.76 36.52/21.07

Voxel R-CNN [3] w/ GBlobs 80.95/53.98 38.33/33.22 29.18/25.68 49.48/37.62

✗
Voxel R-CNN [3] 54.61/20.83 10.51/ 7.68 5.88/ 5.12 23.66/11.21

Voxel R-CNN [3] w/ GBlobs 80.84/55.05 37.93/33.24 28.62/24.60 49.13/37.63

Table 2. Influence of z-alignment on detector trained with different input features. We trained Voxel R-CNN [3] on nuScenes [1] using all

three classes (Car, Pedestrian, Cyclist) simultaneously and evaluated performance using Average Precision (AP) on Bird’s-eye View (BEV) /

3D views at 40 recall positions. Intersection over Union (IoU) thresholds of 0.7, 0.5, and 0.5 were used for Car, Pedestrian, and Cyclist,

respectively. We evaluate the performance on KITTI [4], where we report the average AP across all difficulty levels (Easy, Moderate, Hard).

Additionally, we provide the mean AP over the three classes. The best value in each category is highlighted in bold.
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(a) nuScenesÑKITTI Voxel R-CNN [3].

(b) nuScenesÑKITTI Voxel R-CNN [3] w/ GBlobs.

Figure 2. Qualitative evaluation of Voxel R-CNN [3] on a nuScenesÑKITTI benchmark thresholded at 0.5. Ground truth detections are

shown in green. Detections from a model trained on standard global input features and our GBlobs are depicted in blue (a) and purple (b),

respectively. False positive detections are marked with red arrows. The color of the point cloud represents the height.



(a) KITTIÑWaymo SECOND [9].

(b) KITTIÑWaymo SECOND [9] w/ GBlobs.

Figure 3. Qualitative evaluation of SECOND [9] on a KITTIÑWaymo benchmark thresholded at 0.5. Ground truth detections are shown in

green. Detections from a model trained on standard global input features and our GBlobs are depicted in blue (a) and purple (b), respectively.

False positive and false negative detections are marked with red and yellow arrow, respetively. Detections which are dubious are markes with

orange arrow. The color of the point cloud represents the height.
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