
LiSu: A Dataset and Method for LiDAR Surface Normal Estimation

Supplementary Material

This supplementary material provides an in-depth analy-

sis of inference speed for the models used in our benchmarks

(Suppl. A). Additionally, it offers comprehensive details on

the acquisition of our LiSu dataset (Suppl. B) and the im-

plementation specifics of baseline methods (Suppl. C). Fur-

thermore, we present additional experiments for the neural

surface reconstruction downstream task (Suppl. D), quali-

tative evaluations (Suppl. E), and a rigorous ablation study

exploring the impact of various design choices (Suppl. F,

Suppl. G, Suppl. H).

A. Inference Speed vs. Accuracy

Traditional methods like PCA [9] and Jet [1] are renowned

for their efficient runtime. However, their accuracy is de-

graded by inherent rotation ambiguities. This often mani-

fests as points on the same plane exhibiting opposite surface

normal directions (recall Fig. 4 of the main manuscript).

Common heuristics, such as orienting all normals towards a

fixed viewpoint or propagating orientation information via

Minimum Spanning Tree (MST) [9], alleviate this problem

but, due to the noisy nature of LiDAR point clouds, are not

particularly effective.

Supervised methods like SHS-Net [12], Du et al. [5],

GraphFit [10], PCPNet [7], NeuralGF [13], CMG-Net [18],

and NGL [11] offer substantial performance gains, but at the

cost of significant computational overhead. A key limitation

of these methods is their reliance on point cloud partitioning,

required during both training and inference. Furthermore,

they often employ point-based backbone architectures like

PointNet [14] or architectures which require special opera-

tions such as DGCNN [16], which hinder efficient process-

ing. Originally introduced to address the limited dataset size

of PCPNet [7] (30 samples), point cloud partitioning remains

necessary during inference, significantly increasing process-

ing time, especially for large-scale datasets like ours, LiSu

(approximately 100k points per frame). Batching partitions

is a potential strategy for accelerating inference. However,

GPU VRAM limits batch sizes, preventing single-frame

inference and necessitating multiple inference passes for

batched partitions. Moreover, PointNet and DGCNN are not

optimized for large-scale point clouds, making it challenging

to adapt them to single-frame training/inference.

Conversely, we leverage the Point Transformer V3

(PTv3) [17], a state-of-the-art transformer architecture build

for large-scale LiDAR point clouds. Their employment of

space-filling curves (e.g. z-order or Hilbert curve) for point

cloud serialization and hardware-optimized operations (e.g.

FlashAttention [2, 3]) enable significant speedups. A single
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Figure 1. Inference speed vs. accuracy plot for various neural

network-based and traditional methods. Accuracy is calculated

as the average angular accuracy across all thresholds listed in Tab.

2 of the main manuscript: {5.0◦, 7.5◦, 11.25◦, 22.5◦, 30.0◦}.

inference step on a large-scale LiDAR point cloud can be ex-

ecuted in orders of magnitude less time (e.g. 50 milliseconds

vs. 20 seconds for DGCNN). PTv3 coupled with our novel

LiSu and training method exhibits exceptional performance

in LiDAR surface normal estimation, requiring significantly

less computational time compared to existing methods, as

visualized in Fig. 1.

B. LiSu Acquisition

To obtain our custom LiSu dataset, we extended the CARLA

simulator (version 0.9.151) built with Unreal Engine 4.262

with an additional LiDAR sensor. This sensor captures not

only standard position and intensity data but also the surface

normal vector of each hit point. We extended CARLA’s ray

caster to return surface normals in the sensor’s frame of

reference and stream this data from the C++ core. This data

stream was collect by the Python front-end and saved to a

file together with the global sensor position and orientation

(required for keyframe transformation in TGTV in Sec. 3.2

of the main manuscript)

We initialize a virtual LiDAR sensor to reflect commonly

employed real-world LiDARs [6, 15]. A detailed configura-

tion of this sensor is presented in Table 1. The virtual LiDAR

1https : / / github . com / carla - simulator / carla /

releases/tag/0.9.15
2https://github.com/CarlaUnreal/UnrealEngine

https://github.com/carla-simulator/carla/releases/tag/0.9.15
https://github.com/carla-simulator/carla/releases/tag/0.9.15
https://github.com/CarlaUnreal/UnrealEngine


(a) Town02 (b) Town03

Figure 2. Bird’s eye view images of CARLA towns. Images taken from https://carla.readthedocs.io/en/latest/core_

map/#carla-maps

Description Value

Number of lasers 64
Maximum distance to raycast in meters 100
Points generated by all lasers per second 2M

LIDAR rotation frequency 10Hz
Angle of the highest beam 10◦

Angle of the lowest beam −30◦

Horizontal field of view 360◦

Proportion of randomly dropped points 0.45
Std Dev point noise along the raycast vector 0.02

Table 1. Virtual LiDAR attributes used for the data acquisition.

sensor was mounted on a self-driving car, randomly placed

within the simulation environment. We populated the simula-

tion environment with approximately 6000 dynamic actors,

such as vehicles (cars, trucks, buses, vans, motorcycles, bi-

cycles) and pedestrians (adults, children, police) as well as

2000 static props (barrels, garbage cans, road barriers, etc.).

Due to the different map sizes (e.g. Fig. 2a vs. Fig. 2b), not

all objects were guaranteed to appear in every simulation.

For each map, we conducted N independent runs, each ini-

tialized with a different random seed. To avoid redundant

frames, we terminated simulations prematurely if prolonged

traffic halts, such as those caused by red lights, occurred. A

detailed breakdown of simulation runs is provided in Tab. 2.

C. Implementation Details of Other Methods

We benchmarked our method against several state-of-the-art

point cloud surface normal estimation methods: PCPNet [7],

GraphFit [10], Du et al. [5], and SHS-Net [12]. These meth-

ods share a common training strategy, originally proposed

in PCPNet, which involves randomly sampling query points

and their k-nearest neighbors from each training sample.

While PCPNet’s dataset consists of dense point clouds, our

LiDAR data is significantly sparser. Consequently, we re-

duced the neighborhood size k to 32 to better adapt to the

sparse nature of our data. Furthermore, given our larger

dataset, we decreased the number of training epochs to 10

for all methods. All other hyperparameters were kept consis-

tent with their original settings.

D. Neural Surface Reconstruction

Our experiments in Sec. 4.3 closely replicate existing

benchmarks in neural surface reconstruction from LiDAR

data [8, 19]. In these benchmarks, a mesh reconstructed from

all available LiDAR data is queried with rays generated from

the same data, and the resulting distances are compared to

actual LiDAR measurements. While this approach offers

a convenient evaluation framework, it may not accurately

reflect the method’s true performance, as the same data is

used both in training and evaluation.

Therefore, we propose a more rigorous evaluation pro-

tocol. We randomly split LiDAR points from an entire se-

quence into two disjoint sets: a training and a testing set.

The training split is used exclusively in the training phase.

Subsequently, the reconstructed mesh is evaluated using the

unseen testing set. By ensuring that the training and testing

sets are mutually exclusive, we can better identify model’s

potential limitations.

The proposed evaluation protocol proves particularly chal-

lenging for plain ReSimAD [19], as evident from the mesh

reconstruction in Fig. 3 and LiDAR simulation in Fig. 4.

Limited training data hinders SDF generalization, leading to

poor extrapolation in areas lacking ground truth signals, such

as ridges in the mesh (Fig. 3). This noise propagates to the

LiDAR simulation (Fig. 4), resulting in highly noisy point

clouds. Incorporating surface normals as an additional train-

ing signal mitigates these issues, leading to smoother meshes

and consequently cleaner point clouds. This improvement is

also quantified in Tab. 3

https://carla.readthedocs.io/en/latest/core_map/#carla-maps
https://carla.readthedocs.io/en/latest/core_map/#carla-maps
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Figure 3. Mesh reconstruction results comparing plain ReSimAD [19] and our method, which incorporates surface normals estimated from a

model trained on our LiSu dataset and fine-tuned on Waymo Open Dataset [15]. Results are shown for three different Waymo sequences.
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Figure 4. LiDAR simulation results comparing mesh reconstructed with plain ReSimAD [19] (left) and our method, which leverages

estimated surface normals from a model trained on our LiSu dataset and fine-tuned on Waymo Open Dataset [15] (middle). The color scale

represents the deviation from ground truth distance, with blue indicating low error and red indicating high error. The rightmost image shows

the ground truth LiDAR point cloud (used for mesh reconstruction), colored by distance from the sensor (blue: near, red: far).



Map # Runs # Frames Summary
tr

a
in

Town01 11 6339 A small, simple town with a river and several bridges.

Town03 11 7658 A larger, urban map with a roundabout and large junctions.

Town05 11 5477 Squared-grid town with cross junctions and a bridge. It has multiple lanes per direction.

Town07 11 5579 A rural environment with narrow roads, corn, barns and hardly any traffic lights.

total 4 44 25 053

te
st

Town02 11 5235 A small simple town with a mixture of residential and commercial buildings.

Town04 5 3591 A small town embedded in the mountains with a special “figure of 8”’ infinite highway.

Town06 11 3980 Long many lane highways with many highway entrances and exits (with Michigan left).

Town12 16 9361 A large map, including high-rise, residential and rural environments.

total 4 43 22 167

va
l

Town10 11 2825 A downtown area with skyscrapers, residential buildings and an ocean promenade.

total 1 11 2825

overall 9 98 50 045

Table 2. Summary of our data splits, including CARLA [4] maps, number of randomly started simulation runs, and total number of frames

for the given map. We include the short summary provided by CARLA for each map.

Seq. ReSimAD [19] Ours

1027514 0.68 / 0.15 0.65 / 0.14

1006130 2.55 / 0.23 2.56 / 0.25

1137922 0.95 / 0.77 0.92 / 0.73

1323841 0.51 / 0.11 0.51 / 0.12

1486973 0.83 / 0.16 0.82 / 0.17

1522170 2.05 / 2.70 1.78 / 2.06

1647019 1.01 / 0.70 0.98 / 0.63

3425716 0.70 / 0.22 0.68 / 0.20

9385013 0.52 / 0.20 0.51 / 0.18

average 1.09 / 0.58 1.04 / 0.50

Table 3. We evaluate neural surface reconstruction on diverse

Waymo sequences using Root Mean Square Error (RMSE) / Cham-

fer Distance (CD). Lower values indicate better performance. ReSi-

mAD [19] omits surface normal loss during reconstruction. Ours

is a Waymo model, trained with our proposed self-training frame-

work.

E. Qualitative Evaluation

We conduct a qualitative evaluation on the Waymo Open

Dataset [15] to highlight the benefits of our LiSu. By com-

paring SHS-Net [12] trained on PCPNet [7] to our LiSu, we

demonstrate the significant advantage of leveraging a dataset

tailored to real-world LiDAR point clouds. The lack of pub-

licly available LiDAR datasets underscores the potential

of our LiSu to advance the field, regardless of the specific

method employed. Notably, our self-supervised approach

achieves impressive results when applied to a real-world

dataset like Waymo, as visualized in Fig. 5.

F. Loss-Regularization Trade-off

In the following section, we present an ablation study to

substantiate our selection of the γ parameter (Eq. (7) of

the main manuscript), which balances loss minimization

and regularization. To expedite the training and evaluation

phases, we utilized 50% and 20% subsets of the original

training and evaluation data, respectively.

The hyperparameter γ balances the trade-off between

noise and smoothness in the final predictions. Lower values

of γ encourage the model to prioritize edge preservation,

potentially leading to noisier predictions. Conversely, higher

values of γ promote smoother predictions, which may result

in the loss of fine-grained details and edge information. In the

extreme case, when γ = 1, the model’s predictions become

almost entirely smooth, with minimal edge detection. In our

experiments, we found that γ = 0.1 provided an optimal

balance between noise and detail, as illustrated in Fig. 6.

G. k Neighborhood Graph Ablation

To construct the k-neighborhood graph G for both Spatial

Graph Total Variation (SGTV) and Temporal Graph Total

Variation (TGTV) (Sec. 3.2), we require a hyperparameter k

to specify the size of the local neighborhood. In the following

experiments, we fix γ = 0.1 and systematically vary k to

assess its influence on the model’s overall performance. To

expedite the training and evaluation phases, we utilized 50%
and 20% subsets of the original training and evaluation data,

respectively.

The parameter k controls the model’s output smoothness,

with higher values leading to increased smoothing and poten-

tial loss of detail (e.g. k = 32 in Fig. 7). Conversely, smaller



(a) SHS-Net [12] trained on PCPNet [7]

(b) SHS-Net [12] trained on our LiSu

(c) Direct transfer with our method

(d) Unsupervised domain adaptation from LiSu to Waymo with our method

Figure 5. Qualitative comparison of SHS-Net [12] directly transferred from PCPNet [7] (a) and our LiSu dataset (b). Our dataset, tailored for

LiDAR surface normal estimation, yields superior results. Additionally, we demonstrate the effectiveness of our method for both direct

transfer (c) and self-supervised domain adaptation (d) on a challenging Waymo Open Dataset frame.
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Figure 6. Average angular accuracy (↑) computed across thresholds

{5.0◦, 7.5◦, 11.25◦, 22.5◦, 30.0◦} and average angular error (↓)

calculated across mean, median and RMSE, for varying γ.
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Figure 7. Average angular accuracy (↑) computed across thresholds

{5.0◦, 7.5◦, 11.25◦, 22.5◦, 30.0◦} and average angular error (↓)

calculated across mean, median and RMSE, for varying k.

values of k (e.g. 4) may not provide sufficient smoothing,

resulting in noisy outputs. As Fig. 7 illustrates, k = 8 offers

a favorable balance between smoothness and detail preserva-

tion. As a general guideline, we recommend setting k to the

median number of points within a 0.1-meter radius around

each point in the input data.

H. Weighted Adjacency Matrix Ablation

Edge weights in our graph G for both SGTV and TGTV

(Sec. 3.2 of the main manuscript) are computed using an

exponential decay function,

w(x) = exp

(

−
x2

σ2

)

, (1)
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Figure 8. Effect of the decay constant σ on edge weights for differ-

ent distances x in meters.

0.
05 0.
1

0.
2

0.
5

0.
9

85

85.5

86

86.5

σ

A
v
er

ag
e

A
n

g
lu

ar
A

cc
u

ra
cy

8.6

8.8

9

9.2

A
v
er

ag
e

A
n

g
u

la
r

E
rr

o
r

Avg. Ang. Err.

Avg. Ang. Acc.

Figure 9. Average angular accuracy (↑) computed across thresholds

{5.0◦, 7.5◦, 11.25◦, 22.5◦, 30.0◦} and average angular error (↓)

calculated across mean, median and RMSE, for varying σ.

where x represents the Euclidean distance between two graph

nodes (i.e. points). The decay constant σ determines the rate

at which the edge weight decreases with increasing distance.

We depict the influence of different σ in Fig. 8.

To study the impact of the hyperparameter σ, we con-

ducted an ablation study with γ = 0.1 and k = 8, varying

σ across multiple runs. For efficiency, we used 50% of the

training data and 20% of the evaluation data. Results showed

that smaller σ values produce sparse graphs, reducing regu-

larization, while larger values introduce noise by connecting

distant points, potentially belonging to different surfaces (e.g.

0.2 meters apart). Empirically, σ = 0.1 was found optimal,

as shown in Figure 9.
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