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We provide additional implementation details related to
the architecture of our model, optimization procedure, and
experimental settings. We also include supplemental re-
sults and details about the captured dataset. Code and data
are available from our project webpage. Please refer to
the webpage and video for animated visualizations of re-
sults, including lidar view synthesis, reconstructed geom-
etry, time-resolved relighting, and separation of direct and
indirect light.

1. Implementation Details

1.1. Architecture Details

Geometry. We use Zip-NeRF’s [3] proposal sampling ar-
chitecture to represent scene geometry and for volume ren-
dering. Specifically, we use two hash-encoding-based “pro-
posal” networks that output density, which is used for hi-
erarchical sampling, and one final network that outputs the
density used in Equation 4, as well as normals n used for the
cache and physically-based rendering. The hash-encoding
based proposal networks have spatial resolutions of 512 and
1024 along all axes, while the final density network has a
resolution of 2048. Each network has a multi-layer percep-
tion (MLP) head with 2 layers and 64 hidden units.

We use 64 samples for the first proposal network, 64
samples for the second proposal network, and 32 samples
for the final geometry network to volume render the cache
geometry. In order to render the physically-based model,
we leverage a single sample quadrature estimator for both
primary and secondary rays, as in Attal et al. [2].

Cache. The position-dependent appearance feature f app

used for the cache has dimension 128 and is predicted with
a hash encoding that has a spatial resolution of 2048. The
learned BRDF for the direct component of the cache f dir

in Equation 11 is a sum of diffuse BRDF f dir,diff(f app), and
specular BRDF f dir,spec(f app,n,ωℓ,ω

′
o). We predict the dif-

fuse BRDF as a function of f app alone, with a 2-layer, 64-

hidden-unit MLP. We predict the specular BRDF as a func-
tion of f app as well as the dot product between the normal
n and normalized half vector ωℓ+ω′

o

||ωℓ+ω′
o||

with a 2-layer, 64-
hidden-unit MLP.

The specular indirect component of the cache, as de-
scribed in Equation 12, uses a split-sum approximation. We
predict f indir

Ω (f app,n,ω′
o) as a function of the appearance

feature and the dot product between normals n and out-
going direction ω′

o. We predict Lindir
i,Ω (f app,xℓ,n,ω

′
o) as a

function of the appearance feature, the reflected direction
reflect(ω′

o,n), and the light source position xℓ. Again, both
use 2-layer, 64 hidden unit MLPs. We also predict a purely
diffuse indirect component Lindir,diff

o that is a function of the
appearance feature and is conditioned on light source posi-
tion, with a 2-layer 64-hidden-unit MLP.

Materials. We leverage the Disney–GGX [4] BRDF pa-
rameterization, with parameters albedo a(x), metalness
m(x), and roughness r(x). This BRDF can be written as:

f(ωi,ωo,x) = fdiffuse(x) + fspecular(ωi,ωo,x) (S1)

fdiffuse(x) =
(1−m(x))a(x)

π
(S2)

fspecular(ωi,ωo,x) =
DFG

4(n · ωi)(n · ωo)
(S3)

We refer to Burley [4] and Liu et al. [6] for definitions of
(D,F,G). We use the Trowbridge-Reitz distribution func-
tion [10] for the normal distribution function D.

We predict a material feature fmat using a hash-
encoding-based network with a resolution of 2048, and de-
code all of the above parameters using a linear layer from
this feature.

Importance sampling. We leverage multiple importance
sampling (MIS) [10], using the distribution function of the
GGX BRDF, and a learned von Mises-Fisher-based impor-
tance sampler with an architecture similar to that of Attal
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Fig. S1. Rendered views and materials for simulated (rows 1–
2) and captured scenes (rows 3–4). See the text for a detailed
description.

et al. [2]. We supervise the importance sampler using the
integrated intensity along secondary rays.

1.2. Loss Details

Mask loss. The mask loss for a particular ray is defined
as:

Lmask = mask · |1− acc|+ (1− mask) · |acc|, (S4)

where acc is the accumulated transmittance (or sum of the
render weights) along a particular ray.

Predicted normal loss. As discussed, we output the pre-
dicted normals using the density hash-encoding-based net-
work. Similar to Ref-NeRF [12] and TensoIR [5], we con-
strain the predicted normals to match the negative gradient
of the density field with an L2 loss:

Lnormals =
∑
k

wk

∥∥∥npred
k − nderived

k

∥∥∥2, (S5)

where wk are the render weights for a given ray, and

nderived
k = − ∇σ(xk)

∥∇σ(xk)∥
. (S6)

The loss weight λnormals varies per-dataset.

Material smoothness loss. For the smoothness los Lmat,
we leverage the implementation of TensoIR [5] for synthetic
datasets, and a standard L2 smoothness loss for captured
datasets.

RawNeRF loss. For the photometric losses (Equations 13
and 14 of the main paper), we use β = 1 for synthetic
scenes, β = 2 for the cache in captured scenes, and β = 1
for the physically-based model in captured scenes.

Other loss hyperparameters. For our photometric
losses, we set λcache = 10, λdir = 1, λindir = 1. For the
additional losses, we set λinterlevel = 0.01 for all scenes. For
the simulated scenes, we set λgeom = 0.0008, λdisortion =
0.0001, and λmask = 0.1. For the captured scenes, we set
Lgeom = 0.00025 and λdisortion = 0.001. We assume that the
scene mask is all ones (i.e., all opaque) for captured scenes,
and we set the mask loss to λmask = 0.001.

1.3. Time-Resolved Imaging Without Lidar

Section 5.3 of the paper discusses how our model can re-
cover time-resolved videos of propagating light by training
on indirect time-of-flight or intensity images. In both cases,
we write the loss as

Ldata =
∑
o,ωo

α(Lcache
i )

∑
k

∣∣∣∣∣∣∑
τ

gk(τ)(Li − Lmeas
i )

∣∣∣∣∣∣2.
(S7)

Here, {gk(·)}k defines a set of path length importance func-
tions induced by the indirect time-of-flight or intensity sen-
sor [1]. For indirect time-of-flight, we have:

gk(τ) = cos(2πfk · τ + θk) + 1, (S8)

where fk are frequencies and θk are phase shifts. We
use (f1, θ1) = (30 × 106, 0), (f2, θ2) = (30 × 106, π),
(f3, θ3) = (170 × 106, 0), (f4, θ4) = (170 × 106, π). For
intensity images, we use g1 = 1. We apply the same con-
sistency loss as in Equation 15 of the main paper without
adjustments.

1.4. Finetuning for Relighting

As discussed in Section 5.3 of the paper, we leverage fine-
tuning for relighting whenever the intensity profile of the
light source differs from the training data (e.g. a projector
as in Fig. 1 of the paper). In order to do this, we freeze
all model parameters, apart from those that define the cache
direct and indirect appearance (Equation 11 and Equation
12). We then train these parameters in order to minimize
the radiometric prior (Equation 15).



Table S1. Evaluation of lidar rendering from novel viewpoints and
geometry recovery.

method PSNR (dB) ↑ LPIPS ↓ SSIM ↑ MAE ↓ L1 depth ↓ T-IOU ↑

si
m

T-NeRF [7] 22.44 0.40 0.71 28.00 0.59 0.58
T-NeRF w/ filtering 24.52 0.34 0.78 22.54 0.40 0.70
FWP++ [8] 29.00 0.30 0.87 22.80 0.47 0.73
ours 30.99 0.31 0.89 8.45 0.21 0.76

2. Additional Results

2.1. Material Decomposition

In Fig. S1, we show the recovered albedo, roughness, and
metalness for simulated and captured scenes from a novel
view. Qualitatively, the results align with expectations in
several respects. The recovered albedo factors out varia-
tions in shading and illumination; the roughness is low/dark
for specular objects (floor, ball, peppers in row 1; pot in row
2; chrome balls in row 3); and the metalness is bright/high
for the pot in row 2 and chrome balls in row 3. Gener-
ally, the materials are harder to interpret for the captured
results—though we expect that improvements to the system
calibration would likely improve the results.

We note that for Fig. S1, we leverage an additional loss
applied to the integrated time-resolved measurements —
specifically the loss in Equation S7 for intensity images.
We find that this slightly improves the convergence of the
recovered materials.

2.2. Additional Baselines

We include another T-NeRF [7] baseline, which applies a
matched filter to the time-resolved measurement to find the
direct peak—similar to a conventional lidar—before super-
vision. We include this result in Table S1 (see T-NeRF w/
filtering).

The baseline improves upon T-NeRF and even outper-
forms FWP++ for geometry modeling. This is expected
since one of the main reasons T-NeRF fails in geometry re-
covery is the presence of the indirect component of light
in the lidar scans. However, our method still outperforms
this new baseline since the matched filter does not always
accurately localize the time of the direct surface reflection,
especially under strong indirect light. The new baseline also
struggles with novel view synthesis since it does not model
indirect light transport effects.

2.3. Quantitative Results

We provide a per-scene breakdown of quantitative results
for simulated scenes in Table S2 and captured scenes in Ta-
ble S3. We see similar trends for all scenes as described in
the main text.

2.4. Qualitative Results

We provide additional qualitative results on novel views in
Figure S3 and in the supplemental web page, which in-
cludes novel view flythroughs, time-resolved relighting, and
separation of direct and indirect light. We emphasize that
our method recovers more accurate geometry, particularly
in scenarios involving strong indirect lighting from specular
reflections or diffuse inter-reflections, outperforming previ-
ous approaches.

3. Dataset
3.1. Calibration

To capture our real multi-viewpoint dataset, we use a hard-
ware setup similar to the one used by Malik et al. [8], with
a 532 nm laser emitting 35 ps pulses at a 10 MHz synced
with a single pixel scanning SPAD at 512×512 resolution.
We capture multiple viewpoints with the same rotation ta-
ble and elevation arm setup. Specifically, our light source
position is fixed for all viewpoints with respect to the cam-
era rather than to the scene. Camera intrinsics are calibrated
with a checkerboard and the MATLAB Camera Calibration
Toolbox [9], and extrinsics are calibrated using COLMAP
[11] with a scene including a checkerboard so that radial
camera pose translation can be scaled by matching the re-
construction to the board’s known geometry.

For our scenes, we assume our light sources are point
sources, calibrated so that their location is known with re-
spect to the scene. We simulate point light sources by pass-
ing our free-space laser light, coupled through multi-mode
fiber, through a collimating lens, and multiple high-power
diffusers. To address any residual imperfections in our non-
ideal point source, we image a uniformly reflective, diffuse
surface with a pre-calibrated pose, using a checkerboard
pattern for alignment. This process enables us to compute
a directional intensity profile for the light source, which we
model during inverse rendering.

The light source position is calibrated using the follow-
ing procedure. We (1) capture a checkerboard and com-
pute corner poses, (2) use the corresponding time-resolved
measurement for each corner to measure total ToF and thus
distance from the light source to the camera, (3) subtract the
calibrated corner pose to camera distance, and (4) trilaterate
to locate the unknown light source position.

3.2. Scene Descriptions

We provide a description of each captured scene in Ta-
ble S4.



Table S2. Breakdown of results on the simulated scenes for PSNR, LPIPS, SSIM, MAE, L1 Depth (L1) and Transient IOU (T-IOU).

Pots Cornell Peppers Kitchen

P
SN

R T-NeRF 23.78 23.90 19.07 23.00
FWP 28.64 31.75 33.01 22.61
ours 30.44 32.38 37.46 23.68

LP
IP

S T-NeRF 0.36 0.32 0.44 0.49
FWP 0.26 0.30 0.26 0.39
ours 0.35 0.31 0.27 0.30

SS
IM

T-NeRF 0.73 0.82 0.72 0.56
FWP 0.86 0.87 0.94 0.79
ours 0.90 0.89 0.93 0.84

M
A

E T-NeRF 36.09 18.33 13.03 44.56
FWP 37.41 10.86 7.20 35.75
ours 7.81 10.25 2.65 13.08

L1

T-NeRF 0.18 0.10 0.42 1.66
FWP 0.29 0.10 0.28 1.20
ours 0.04 0.09 0.19 0.53

T-
IO

U T-NeRF 0.66 0.69 0.76 0.20
FWP 0.82 0.82 0.88 0.41
ours 0.88 0.78 0.94 0.46

Table S3. Breakdown of results on the captured scenes for PSNR, LPIPS, SSIM, MAE and Transient IOU (T-IOU).

House Globe Spheres Statue

P
SN

R T-NeRF 15.94 11.44 13.25 18.05
FWP 27.40 26.00 28.51 31.89
ours 27.47 25.97 26.07 30.04

LP
IP

S T-NeRF 0.46 0.56 0.53 0.58
FWP 0.30 0.34 0.38 0.26
ours 0.32 0.34 0.39 0.28

SS
IM

T-NeRF 0.36 0.19 0.35 0.51
FWP 0.78 0.75 0.81 0.92
ours 0.79 0.75 0.75 0.90

T-
IO

U T-NeRF 0.34 0.10 0.13 0.34
FWP 0.62 0.54 0.43 0.60
ours 0.60 0.53 0.44 0.60
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Fig. S2. Additional captured results comparing reconstructed normals from the proposed method to those of T-NeRF [7] and FWP++ [8].
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Fig. S3. Additional simulated results comparing rendered novel views and reconstructed normals from the proposed method to those of
T-NeRF [7] and FWP++ [8].



Table S4. Descriptions of the captured scenes. All scenes have a calibrated bin width of 0.0105 m and span 15 degrees in elevation angle.

Scene Description Description Training
Views

Test
Views

Azimuth
Span

Normalization
Scale

House A diffused pulsed laser source rotates
with the lidar sensor and illuminates a
ceramic house, mushroom, and pump-
kin with a plate in the background.

81 13 240° 600

Globe A diffused pulsed laser source rotates
with the lidar sensor and illuminates a
globe and a lightbulb. Our model re-
constructs the fine details of the wires
of the lightbulb stand.

55 11 132° 600

Spheres A diffused pulsed laser source rotates
with the lidar sensor and illuminates
two specular spheres.

56 11 132° 600

Statue From the Flying with Photons Dataset
[8]: a stationary diffused pulsed laser
source illuminates a statue of David
and two candles from the side.

60 15 150° 600
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