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Re-encoding Re-sampling
Method ChartQA V-Star ChartQA V-Star

0 (Original) 73.1 67.3 73.9 67.0
+ 20% 73.3 67.5 73.3 66.5
+ 40% 72.7 68.1 73.1 64.4
+ 60% 70.1 66.5 72.5 63.3
+ 80% 70.4 64.5 71.2 60.7

Table A. Impact of RoI context expansion ratios on the perfor-
mance of re-encoding and re-sampling strategies, evaluated on the
ChartQA [55] and V-Star [96] benchmarks. Re-encoding demon-
strates improved performance with larger context regions, while
re-sampling favors the original bounding box size.

A. Additional Experiments and Analysis

A.1. RoI Context Expansion

To investigate the impact of region of interest (RoI) context
expansion on Argus, we examined how expanding a pre-
dicted bounding box affects performance. Specifically, we
expanded the bounding box by a fixed ratio to include addi-
tional context around the predicted center. If the expanded
region exceeded the image boundaries, it was cropped to
fit within them. Table A and Figure A present the perfor-
mance evaluation of various expansion ratios using two dis-
tinct visual re-engagement strategies. Our results reveal the
following insights.

Re-encoding Strategy. The re-encoding approach bene-
fits from a moderate expansion of the context region. Opti-
mal performance is achieved with a 20 to 40% expansion
ratio on the ChartQA [55] and V-Star [96] benchmarks.
The additional context helps mitigate issues stemming from
overly tight or slightly inaccurate bounding boxes, which
are common in object grounding tasks. Moreover, the larger
context aids in localizing the bounding box’s relative posi-
tion within the image, which is particularly beneficial for
tasks that require both local and global context reasoning.

Re-sampling Strategy. Unlike re-encoding, the re-
sampling strategy method achieves its best performance
with the original bounding box size. This can be attributed
to an inherent context-expansion mechanism that leverages
overlapping patches, utilizing all patch embeddings that in-
tersect with the bounding box region as the input to the re-
engagement module. As a result, further expansion of the
bounding box does not yield additional benefits.

Effect of Excessive Expansion. For both strategies,
overly large context regions hurt performance. Including
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Figure A. Performance comparison of re-encoding and re-
sampling strategies under varying region context expansion ratios.
Re-encoding achieves optimal performance with an expanded con-
text region (20% to 40% expansion), while re-sampling performs
best with the original box size (0% expansion). The optimal per-
formance points for each strategy are highlighted in darker colors.

excessive irrelevant information introduces noise, which
distracts the model from focusing on the most relevant RoIs.
This counteracts the advantages of RoI grounding and di-
minishes overall effectiveness.
Choice of LLMs and Architectural Designs. In Table B,
we include Vicuna 8B, 13B, and Llama 8B as LLM back-
bones on Argus for comparison. The results show that our
method generalizes to different LLMs. In addition, stronger
LLMs (in size and data) lead to direct gains in performance.
Multi-RoI Scenarios. The CoT reasoning instruction tun-
ing datasets that we used in our work generally follow a
single-RoI setting. In Table C, we extend Argus to multi-
RoI reasoning with a simple multi-step framework. First,
we (1) prompt the model to output RoIs (objects) about
the questions in the text format. Then (2) after parsing,
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Experiments of Argus on other LLMs and Model Sizes
Vicuna-7B [14] 57.5 64.9 61.4 59.3 41.7 60.1 65.3 70.5 52.3 67.5 71.0 61.8 38.8 69.2 75.3 63.9

Vicuna-13B [14] 60.2 66.5 64.4 62.7 43.4 64.2 70.2 74.6 56.9 74.2 75.1 63.3 39.9 72.5 75.9 65.1
Llama-8B [81] 62.2 68.1 68.5 64.2 45.5 64.6 70.1 74.8 56.7 73.6 75.4 63.6 40.4 72.9 75.8 65.1

Table B. Argus supports various choices of LLM backbones. A larger and stronger backbone generally leads to better visual reasoning
performance.

Model V-Star CV-Bench3D

Argus (single-RoI) 68.1 64.2
Argus (multi-RoI) 78.5 69.6

Table C. Extension to multiple RoI show great improvement in
vision-centric benchmarks [85, 96] where .

we conduct CoT reasoning for each separate object, and fi-
nally (3) merge multiple CoT grounding boxes and textual
thoughts into one joint CoT signal for question answering.
The results in the table show that this extension improves
the performance by large margins on two visual reasoning
benchmarks [85, 96], demonstrating the flexibility of Argus
in handling multi-RoI settings.
Discussion about Performance Discrepancy. The per-
formance discrepancy in CV-Bench3D is likely due to the
bias of the multi-RoI data, which is not extensively covered
in our training data. As a result, the results of the multi-RoI
extension experiment shown in Table C demonstrate signif-
icant performance increase. For the performance discrep-
ancy of MMMU [105] and GQA [25], it is caused by strong
language biases, as explained in [85] (Sec. 3.1). These two
benchmarks depend more on language cues rather than vi-
sual input to correctly answer the questions, and thus we
believe that a more language-oriented training data curation
can lead to better performance.

B. Additional Experiment Details

B.1. Visual Foundation Models and LLMs

CLIP [65]. CLIP learns a unified embedding space for
visual and textual content through contrastive learning. It
optimizes the alignment between matching image-caption
pairs while simultaneously pushing apart non-matching
pairs in the embedding space. Due to its robust cross-modal
understanding capabilities, it has established itself as the
predominant vision encoder for multimodal large language
models (MLLMs). In our implementation, we leverage the
official huggingface checkpoint1 of the ViT-L/14 architec-

1https://huggingface.co/openai/clip-vit-large-
patch14-336

ture to initialize our CLIP vision expert. Following [72],
we interpolate the positional embedding to obtain the input
image dimension 448× 448.
ConvNeXt [52]. ConvNeXt represents a modern evolu-
tion of convolutional neural networks (CNNs) that bridges
the gap between CNNs and transformers. By incorporat-
ing transformer-inspired design principles while preserv-
ing the inherent advantages of convolutional architectures,
it achieves exceptional performance across diverse vision
tasks, making it an excellent choice as a vision expert. We
employ the official checkpoint2 of a ConvNeXt-XXLarge
model, which has been pre-trained on LAION-2B and fine-
tuned on ImageNet-1K. The input image dimension is set to
1024× 1024.
EVA-02 [18, 19]. EVA-02 is a vision foundation model
that achieves superior performance with moderate model
sizes. It incorporates Transformer architecture designs and
utilizes masked image modeling pre-training with features
from a large CLIP vision encoder. For this work, we specif-
ically employ the EVA-02-L/16 model checkpoint pre-
trained on detection-focused datasets including COCO [44]
and Objects365 [71], making it particularly well-suited for
perceptive tasks. We utilize the official checkpoint3 and
process input images at a resolution of 1024× 1024.
Llama 3 [81]. Llama 3 represents the latest advance-
ment in open-sourced large language models (LLMs), in-
corporating significant improvements over its predecessors
in instruction-following capabilities and reasoning ability.
For our implementation, we employ the official checkpoint4

of the Meta-Llama-3-8B-Instruct model, which has been
specifically fine-tuned for instruction-following scenarios.

B.2. Implementation Details
Global Training Hyperparameters. Table D details the
global training hyperparameters we have employed across

2https://huggingface.co/timm/convnext_xxlarge.
clip_laion2b_soup_ft_in1k

3https://huggingface.co/Yuxin-CV/EVA-02/blob/
main/eva02/det/eva02_L_coco_det_sys_o365.pth

4https://huggingface.co/meta-llama/Meta-Llama-
3-8B-Instruct

https://huggingface.co/openai/clip-vit-large-patch14-336
https://huggingface.co/openai/clip-vit-large-patch14-336
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https://huggingface.co/Yuxin-CV/EVA-02/blob/main/eva02/det/eva02_L_coco_det_sys_o365.pth
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct


Parameters Stage 1 Stage 2

Learning rate 1e−3 2e−5

Vision encoders trainable trainable
Projector trainable trainable
LLM backbone frozen trainable
Global batch size 256 256
Optimizer AdamW AdamW
Weight decay 0.0 0.0
Beta coefficient β1 0.9 0.9
Beta coefficient β2 0.999 0.999
Epsilon coefficient ϵ 1e−8 1e−8

Gradient accumulation steps 1 1
Warmup ratio 0.03 0.03
Epochs 1 1
Projector type mlp2× mlp2×
Learning rate scheduler cosine cosine
Gradient checkpointing true true
Precision bfloat16 bfloat16
Max sequence length 2048 3072

Table D. Global training hyperparameters of stage 1 pre-training
and stage 2 supervised fine-tuning (SFT) for Argus.

both stages of Argus training. For stage 1, we initialize the
vision experts using pre-aligned checkpoints as described in
Eagle [72], while the MLP projector is randomly initialized.
In stage 2, both the vision experts and MLP projectors are
initialized using the checkpoints obtained from stage 1. The
pre-training stage is trained with 32× NVIDIA A100 GPUs
for 4 hours, , while the supervised fine-tuning (SFT) stage
utilizes 64× NVIDIA A100 GPUs and requires 28 hours of
training.

Vision Encoder Hyperparameters. Table E presents the
specific hyperparameters for each vision encoder integrated
into our model. Each encoder is optimized for different in-
put image resolutions and operates with distinct hidden fea-
ture dimensions. Following feature extraction, we resize the
spatial dimensions of all feature embeddings to 32×32 and
concatenate them along the feature channel dimension, pro-
ducing a unified tensor of shape 32×32×5120 tensor. This
concatenated representation is then processed by the mul-
timodal MLP projector, which maps the feature channels
to match the LLM’s hidden dimension of 4096, ultimately
generating 1024 visual tokens.

B.3. Training Dataset

In this section, we detail the datasets utilized in our model
training pipeline. For pre-training, we adopt the standard
LLaVA-595K [48] dataset, following the training protocols
established by recent state-of-the-art MLLMs. For super-
vised fine-tuning, we employ a diverse mixture of datasets
from multiple sources.

Parameters Values

CLIP input resolution 448× 448
CLIP hidden size 1024
ConvNeXt input resolution 1024× 1024
ConvNeXt hidden size 3072
EVA-02 input resolution 1024× 1024
EVA-02 hidden size 1024
Grid size 32× 32
Aspect ratio square
Pre-processing padding & resizing
Global hidden size 5120

Table E. Hyperparameters for vision encoder designs of Argus.

Eagle-1.8M [72]. Eagle-1.8M represents a comprehen-
sive collection of conversational data aggregated from var-
ious specialized datasets, comprising LLaVA-Instruct [48]
(665K), DocVQA [56] (39K), synDog-EN [33] (50K),
ChartQA [55] (28K), DVQA [27] (25K), AI2D [32]
(15K), ShareGPT-4V [9] (100K), LAION-GPT4v [80]
(11K), LVIS-Instruct4V [89] (220K), LRV-Instruct [47]
(150K), Geo170K [21] (120K), LLaVAR [109] (20K), Vi-
sual7W [115] (70K), and Open-Hermes 2.5 [84] (300K).
This diverse collection spans a wide spectrum of reasoning
scenarios and establishes a robust foundation for our vision-
centric reasoning capabilities.

VCoT [70]. VCoT comprises a diverse collection
of datasets featuring paired bounding box annotations
and image-question pairs, including TextVQA[74] (16K),
TextCaps [73] (32K), DocVQA [56] (33K), DUDE [87]
(15K), SROIE [24] (4K), Birds-200-2011 [88] (10K),
Flickr30K [64] (136K), Visual7W [115] (43K), Infograph-
icsVQA [57] (15K), VSR [46] (3K), GQA [25] (88K), and
Open images [84] (43K).

GRIT [63]. Grounded Image-Text pairs (GRIT) is a large-
scale dataset extracted from COYO-700M [4] and LAION-
2B [80]. It is constructed through a pipeline that extracts
and links noun phrases and referring expressions in image
captions to their corresponding visual regions. Each sam-
ple contains an image, caption, extracted noun chunks with
corresponding bounding boxes, and two CLIP scores [65]
(from ViT-B/32 and ViT-L/14) measuring text-image simi-
larity. Following [42], we retain 756K samples after filter-
ing out entries with CLIP scores below 0.35.

Shikra [8]. Shikra offers a curated collection of
perception-centric datasets specifically designed for ob-
ject grounding instruction tuning. From its composi-
tion, we utilize 326K visual grounding-oriented sam-
ples from the RefCOCO-family datasets (RefCOCO, Re-
fCOCO+, RefCOCOg)[31, 103], Visual Genome [37],
Visual-7w [115], and Flickr30K [64].



C. Additional Qualitative Visualization
We provide additional visualization of the qualitative results
on multimodal benchmarks [55, 96] in Figure B and Fig-
ure C.

D. Limitations and Future Work
While we have made substantial progress in exploring the
design space of MLLMs for vision-centric reasoning tasks,
we acknowledge several limitations in our current approach.
This section discusses these limitations and outlines poten-
tial directions for future research.
Model Capacity. Our investigation primarily focuses on
the design space of visual CoT mechanisms with ground-
ing signals, utilizing the 8-billion parameter Llama3 [81]
model as our LLM decoder backbone. This specific archi-
tectural choice may limit the generalizability of our find-
ings. A natural extension of this work would be to evaluate
our approach across a spectrum of model scales to validate
whether our findings remain consistent in larger architec-
tural configurations.
Dataset Complexity. While Argus leverages a diverse
combination of multimodal reasoning, visual CoT, and per-
ception/grounding datasets, the current landscape of vi-
sual CoT signals remains limited in diversity. Unlike
language-based CoT signals, which are abundantly avail-
able in internet-scale text corpora and existing language
datasets, visual CoT signals are rarely present in large-scale
vision-language datasets. Although we have demonstrated
significant improvements with the available data, we ac-
knowledge that access to larger-scale, higher-quality visual
CoT data would likely yield substantial performance gains
and potentially reveal novel emergent capabilities. We be-
lieve such data could be derived from existing visual per-
ception datasets or through targeted human annotation ef-
forts, presenting an important avenue for future research.
Expanded Vision-centric Tasks Coverage. While our
evaluation of Argus focuses on visual question answering
and referring object grounding tasks – which effectively
demonstrate the synergy between perception and reasoning
objectives – we recognize this scope as potentially not com-
prehensive. In pursuit of developing a truly vision-centric
generalist model, a crucial capability would be support for
open-world detection tasks. However, given the substantial
computational resources and time required for such an in-
vestigation, we regard this exploration as future work.

References
[1] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan

Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren
Zhou. Qwen-VL: A versatile vision-language model for
understanding, localization, text reading, and beyond. arXiv
preprint arXiv:2308.12966, 2023. 2, 5, 6, 7

[2] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin
Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun
Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhao-
hai Li, Jianqiang Wan, Pengfei Wang, Wei Ding, Zheren
Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen
Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Jun-
yang Lin. Qwen2.5-VL technical report. arXiv preprint
arXiv:2502.13923, 2025. 6

[3] Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-
stenberger, Michal Podstawski, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Ny-
czyk, and Torsten Hoefler. Graph of thoughts: Solving elab-
orate problems with large language models. In AAAI, 2024.
3

[4] Minwoo Byeon, Beomhee Park, Haecheon Kim, Sungjun
Lee, Woonhyuk Baek, and Saehoon Kim. COYO-700M:
Image-text pair dataset. https://github.com/
kakaobrain/coyo-dataset, 2022. 3

[5] Nadine Chang, Zhiding Yu, Yu-Xiong Wang, Animashree
Anandkumar, Sanja Fidler, and Jose M Alvarez. Image-
level or object-level? A tale of two resampling strategies
for long-tailed detection. In ICML, 2021. 4

[6] Hong-You Chen, Zhengfeng Lai, Haotian Zhang, Xinze
Wang, Marcin Eichner, Keen You, Meng Cao, Bowen
Zhang, Yinfei Yang, and Zhe Gan. Contrastive lo-
calized language-image pre-training. arXiv preprint
arXiv:2410.02746, 2024. 2

[7] Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun
Liu, Pengchuan Zhang, Raghuraman Krishnamoorthi,
Vikas Chandra, Yunyang Xiong, and Mohamed Elhoseiny.
MiniGPT-v2: large language model as a unified interface
for vision-language multi-task learning. arXiv preprint
arXiv:2310.09478, 2023. 6, 7

[8] Keqin Chen, Zhao Zhang, Weili Zeng, Richong Zhang,
Feng Zhu, and Rui Zhao. Shikra: Unleashing multi-
modal LLM’s referential dialogue magic. arXiv preprint
arXiv:2306.15195, 2023. 4, 5, 6, 7, 3

[9] Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Conghui
He, Jiaqi Wang, Feng Zhao, and Dahua Lin. ShareGPT4v:
Improving large multi-modal models with better captions.
In ECCV, 2024. 5, 3

[10] Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W.
Cohen. Program of thoughts prompting: Disentangling
computation from reasoning for numerical reasoning tasks.
TMLR, 2023. 3

[11] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy,
Faisal Ahmed, Zhe Gan, Yu Cheng, and Jingjing Liu.
UNITER: Universal image-text representation learning. In
ECCV, 2020. 6, 7

[12] Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhang-
wei Gao, Erfei Cui, Wenwen Tong, Kongzhi Hu, Jiapeng
Luo, Zheng Ma, Ji Ma, Jiaqi Wang, Xiaoyi Dong, Hang
Yan, Hewei Guo, Conghui He, Botian Shi, Zhenjiang Jin,
Chao Xu, Bin Wang, Xingjian Wei, Wei Li, Wenjian Zhang,
Bo Zhang, Pinlong Cai, Licheng Wen, Xiangchao Yan, Min
Dou, Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao,
Jifeng Dai, and Wenhai Wang. How far are we to GPT-
4V? closing the gap to commercial multimodal models

https://github.com/kakaobrain/coyo-dataset
https://github.com/kakaobrain/coyo-dataset


Question: how much for a can of skoal?

Argus without CoT Reasoning: 452

Argus with CoT Reasoning: 
<roi-box> → <context> →

3.82

Question: what name is next to number 
5?

Argus without CoT Reasoning: Kelompok

Argus with CoT Reasoning: 
<roi-box> → <context> →

Dewasa

Question: what country does he play for?

Argus without CoT Reasoning: Netherlands

Argus with CoT Reasoning: 
<roi-box> → <context> →

holland

Figure B. Argus performance on TextVQA [74] benchmark, emphasizing on text localization and interpretation in the images.



Question: What is the pose of the woman with 
yellow backpack?

Argus without CoT Reasoning: walking

Argus with CoT Reasoning:  

     squatting

Question: What is the color of the cart?

Argus without CoT Reasoning: color is black

Argus with CoT Reasoning:

       color is green

Question: What kind of animal is on the blue sail?

Argus without CoT Reasoning: bird

Argus with CoT Reasoning:  
      

        spider

Question: How many people are in the oil painting?

Argus without CoT Reasoning: 0 people in the painting

Argus with CoT Reasoning:  

   2 people in the painting

Figure C. Argus performance on V-Star [96] benchmark, emphasizing visual perception of objects and regions in complex scenarios.
Ground truth bounding boxes are represents in red, and our predicted bounding boxes are in blue.
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