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Supplementary Material

A. Implementation Details

Here we provide more details regarding the implementation
and training of our model.

Backbone and Decoder. We use PVTv2-b3 [48] pre-
trained on the COCO dataset [23] as our encoder backbone.
And we use a decoder of a similar design to SegFormer [56],
which consists of four multi-layer perceptron layers (MLP)
to extract feature maps of different scales. We predict two
dense fields with five channels: two for the front and back
surface pixel height map, one for latitude field, and two for
gravity field.

Data Normalization. For pixel height estimation, we nor-
malize the ground truth maps by dividing them with the
height of the image, which roughly turns the range of the
pixel heights into [0, 1] such that our model is not affected
by objects at different scale. For two perspective fields, we
normalize the latitude field into [0, 1] and we represent the
gravity (up-vector) field with a (sine, cosine) tuple as de-
scribed in Section 3.2 in the main paper. The estimation of
all three representations are formulated as regression prob-
lems and trained by MSE loss. Similar to existing meth-
ods [34, 38, 39, 61], due to the estimation of a normalized
pixel height representation, our reconstructed models ( Sec-
tion 3.3) preserve the 3D geometry of the original objects
but are scale-ambiguous. We calibrate the objects recon-
structed by our methods and prior method using a linear
scaling following LeReS [61].

Objact Mask. All the datasets we use for training and
quantitative evaluation come with object masks, which are
from human annotation or off-the-shelf segmentation mod-
els. When evaluating web images, we utilize the Rembg
segmentation model with u2net backbone [13] to obtain the
foreground mask.

Data Generation. We use the physically-based rendering
engine Blender [3] to render realistic RGB channel results.
The front and back surface pixel height is calculated by our
ray tracer. In detail, we shoot one ray to each pixel, find the
first and last intersection points of the ray-object, and cal-
culate their relevant 3D foot points (z=0). Then we project
the intersection points and their footpoints onto the camera.
The pixel heights are calculated by measuring the distances
of the projected intersection points and their projected foot
points in pixel units. Our pixel height calculation is efficient
and can be computed in real time.

Training and Scheduling. The model is trained with the
AdamW [27] optimizer with initial learning rate 0.0005 and

a weight decay 1e-2 for 60K steps with batch size 8 on a 4-
A100 machine. We schedule the multi-step training stages
at steps 30K, 40K, and 50K, with a learning rate decreasing
10× each time. We resize the images to (512, 512) reso-
lution. We use horizontal flipping, random cropping, and
color jittering augmentation during training. And because
horizontal flipping, random cropping, and resizing will af-
fect the values of our representations, we update the ground
truth maps accordingly. The whole model is implemented
using the PyTorch framework [31].

B. More Qualitative Analysis
Here we demonstrate more visualization examples of ORG.
We show more diverse categories of objects with different
camera viewpoints on random web images, and also full
object geometry reconstruction results.

Diverse Categories. In Figure A, we show our direct esti-
mation of pixel height and prospective fields, and also visu-
alize the reprojected depth maps and reconstructed object-
ground point clouds of diverse categories of objects from
web images. The categories include common objects like
microphone, plant, car, and tripod, as well as cartoon fig-
ures. The results show a great generalizability and robust-
ness of our method in the wild.

Object-Ground Reconstruction. In addition to our pre-
vious analyses, we present a detailed visualization of the
complete 3D geometry of the reconstructed objects and the
ground in Figure B. Here, the objects are represented using
3D point clouds. Despite employing a simplified geomet-
ric model in our approach, our results effectively showcase
superior reconstruction quality, particularly for objects with
relatively straightforward geometric structures. This aspect
of ORG highlights the balance between model simplicity
and the ability to achieve high-fidelity reconstructions, even
with less complex geometries.

C. Limitations and Future Work
Primarily, our approach relies on a simplified object shape
assumption, optimizing for efficient image editing (e.g., re-
flection, shadow generation, and ground-aware object pose
change). However, this simplification may yield less than
satisfactory 3D reconstruction results for objects with intri-
cate geometries, particularly in estimating their back sur-
faces. Additionally, our method focuses solely on the geo-
metric aspects of objects, excluding considerations of color
and texture. We propose that leveraging our estimated ge-
ometry as a conditioned prior could significantly enhance
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Figure A. Visualization of ORG on pixel height, (foreground) perspective fields, depth map, and object-ground reconstruction results. The
results demonstrate that our work generalizes to various categories of objects.

image-inpainting processes, presenting a promising direc-
tion for future research.
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