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A. Training Details

The general hyperparameters utilized during training SLOT
CONTRAST are outlined in Table S1, ensuring clarity and
reproducibility. Furthermore, the task-specific hyperparame-
ters used for object dynamics prediction are detailed sepa-
rately in Table S5.

B. Effect of Learned Initialization

To determine the optimal approach for first-frame slot ini-
tialization, we compared two techniques: sampling from a
random distribution and learning fixed query vectors. Our
experimental results show that learned initialization consis-
tently yields superior performance. We hypothesize that
this improvement arises from the emergence of contrastive
slots during learning, a desirable property that promotes slot
specialization. To illustrate this point, we visualized slot
similarities for models initialized using both random and
learned methods on the MOVi-C and YTVIS datasets (see
the first row of Fig. S1). The plots demonstrate a clear pat-
tern: learned slot initializations produce more contrastive
representations, highlighting their advantage over random
initialization. In addition, using slot-slot contrastive loss, we
maintain the constructiveness of the slots (see the second
row of Fig. S1), thus allowing for similar initialization for
successive frame processing.

Next, we further analyze possible slot initializations that
are more flexible than fixed initialization but are still con-
trastive. In particular, we propose an additional adaptive
initialization method using k-means clustering. In particular,
we use k-means clustering on dense object-centric features
h0 obtained by adapting original patch DINO features with
a simple MLP module gψ. The cluster centroids (that are
naturally not similar to each other) serve as slot initialization
for the initial frame in the video. SLOT CONTRAST trained
with such adaptive initialization achieves an FG-ARI score
of 73.1 on the MOVi-C dataset (+2.8 FG-ARI improvement
from fixed initialization). This result highlights the impor-
tance of flexible and contrastive first-frame slot initialization
on model performance. However, the adaptive initialization
is not scalable due to the significant computational overhead
of running k-means for each initialization. Despite this lim-
itation, the proof of concept demonstrates the promise of
advanced initialization strategies, inviting further research in
this direction.

C. Implementation of Slot-Slot Contrastive
Loss

In this section, we provide details on the practical imple-
mentation of the slot-slot contrastive loss. Given the slot
representations st and st+1 at time steps t and t + 1, we
compute the similarity matrix A:

Aijt,t+1 =
sit · s

j
t+1

∥sit∥∥s
j
t+1∥

(S1)

where each element Aijt,t+1 represents cosine similarity be-
tween the i-th slot at time t and the j-th slot at time t+ 1.

Next, we apply the cross-entropy loss LCE(P, I) be-
tween the computed softmax normalized slot similarities
P = softmax(A) and the identity matrix I.

Batch Contrastive Loss We modify the similarity matrix
A to include not only the slots for the current frame at time
step t and the subsequent frame at time step t+ 1, but also
the slots from all frames within the batch of videos that are
processed together. Let B, T , K, and D denote the batch
size, sequence length, number of slots, and the dimension of
the slots, respectively. Initially, the similarity matrix A has
shape A ∈ RB×(T−1)×K×K . After modifying it for batch
comparison, its shape becomes A′ ∈ R(T−1)×(KB)×(KB).

D. Feature Reconstruction Loss as Regularizer
To promote better object discovery we also use feature recon-
struction loss. Feature reconstruction loss, Lrec, measures
the discrepancy between the predicted features ĥt and the
true features ht at each time step t. In our case the features
correspond to self-supervised DINOv2 features. The loss
could be computed using a common distance metric such as
Mean Squared Error (MSE):

Lrec =

T−1∑
t=1

||ht − ĥt||2 (S2)

The loss also serves as an effective regularizer, mitigat-
ing undesired behaviors that can arise from the contrastive
nature of slot-slot contrastive loss. For example, slot-slot
contrastiveloss can’t pull slots representing different objects
together because it is minimized alongside the feature re-
construction loss Lrec. This way, we maximize slot-slot
similarity while still requiring each slot to be informative
about original inputs. So region-wise reconstruction with



Table S1. Hyperparameters of Slot-Slot Contrast Model for Main Results on MOVi-C, MOVi-E, and YouTube-VIS 2021 Datasets

Hyperparameter MOVi-C MOVi-E YouTube-VIS

Training Steps 100k 300k 100k
Batch Size 64 64 64
Training Segment Length 4 4 4
Learning Rate Warmup Steps 2500 2500 2500
Optimizer Adam Adam Adam
Peak Learning Rate 0.0004 0.0008 0.0008
Exponential Decay 100k 300k 100k
ViT Architecture DINOv2 Small DINOv2 Base DINOv2 Base
Initialization FixedLearnedInit FixedLearnedInit FixedLearnedInit
Patch Size 14 14 14
Feature Dimension (Dfeat) 384 768 768
Gradient Norm Clipping 0.05 0.05 0.05

Image Specifications
Image / Crop Size 336 336 518
Cropping Strategy Full Full Rand. Center Crop
Augmentations – – Rand. Horizontal Flip
Image Tokens 576 576 1369

Slot Attention
Slots 11 15 7
Iterations (first / other frames) 3 / 2 3 / 2 3 / 2
Slot Dimension (Dslots) 64 128 64

Predictor
Type Transformer Transformer Transformer
Layers 1 1 1
Heads 4 4 4

Decoder
Type MLP MLP MLP

Loss Parameters
Softmax Temperature (τ ) 0.1 0.1 0.1
Slot-Slot Contrast Weight (α) 0.5 1 0.5

(a) MOVi-C dataset (b) YT-VIS dataset

Figure S1. Similarity matrix between the set of slot initializations, S0 (first row) and first frame slots, S1 (second row) for different loss
functions (feature reconstruction and slot-slot contrast loss) and different initialization strategies (RI = random initialization; LI = learned
initialization).



an MLP decoder decoding slots individually is an effective
regularizer, preventing “wrong slots pulling” behavior as
otherwise pulled slots will not contain the information about
the object they are responsible to reconstruct.

Another key scenario is when an object disappears. In this
case, it is important to understand what happens to the corre-
sponding slot and how its behavior is governed by the objec-
tives. In that case, we want the corresponding slot to main-
tain object information. Given the additional reconstruction
loss, it is possible by ignoring the disappeared object’s slot
(thus serving as latent memory until object reappearance).
This behavior is evident in the Fig. ?? showing fewer active
slots compared to baseline that uses all the available slots.

E. Dataset Details
In this section, we provide details about the datasets used in
our work. Overall, we use several synthetic datasets (MOVi-
C and MOVi-E) and one challenging real-world dataset,
YouTube-VIS. For all datasets, annotations are used only
during the evaluation of the object discovery, while during
training, we use only videos from the datasets.

MOVi Datasets For both MOVi-C and MOVi-E, we uti-
lized the standard train/validation splits. Each dataset con-
tains 9750 training sequences and 250 validation sequences.
While the original datasets are provided at a resolution of
256 × 256, we resized them to 336 × 336 for our experi-
ments. It is important to note that we did not generate new
datasets, but rather modified the resolution of the original
data. This way, we make sure that all the methods are com-
parable in terms of both original input resolution while using
a similar or less token during ViT processing (576 for SLOT
CONTRAST and VideoSAURv2, and 784 tokens for original
VideoSAUR [9]).

Youtube-VIS 2021 The YouTube-VIS dataset is an un-
constrained, real-world dataset designed for video instance
segmentation. It has two versions: YouTube-VIS 2019 and
YouTube-VIS 2021. In our work, we used YouTube-VIS
2021, as it is more complex and challenging compared to the
2019 version. We split the original training set into a new
training set and a validation set, comprising 2,775 and 210
videos, respectively. This split was necessary because the
original validation set for YouTube-VIS 2021 is not publicly
available.

F. Metrics Details
To evaluate our method, we use two metrics: foreground Ad-
justed Rand Index (FG-ARI) and mean Best Overlap (mBO)
to assess the quality of the masks produced by our models.
FG-ARI is a variant of the standard ARI metric, computed
by excluding the background mask, and is commonly used

in the object-centric literature to measure the similarity be-
tween predicted object masks and ground truth masks. It
primarily evaluates how well objects are segmented.

Mean Best Overlap (mBO), on the other hand, measures
the similarity between predicted and ground truth masks us-
ing the intersection-over-union (IoU). For each ground truth
mask, the predicted mask with the highest IoU is selected,
and the average IoU is computed across all matched pairs.
mBO also considers background pixels, offering a better
measure of how well the masks align with the objects.

To differentiate between per-frame (image-based) and
video-wide evaluations, we use ”Image” as a prefix for the
metrics (e.g., Image FG-ARI and Image mBO) when com-
puted on individual frames. When we do not use an addi-
tional prefix, we refer to the ”Video” version of the same
metric when computed across entire videos. We are particu-
larly interested in video-based metrics, as they additionally
consider the consistency of object masks.

G. Baseline Details
VideoSAUR To compare our method with the state-of-
the-art VideoSAUR method [9], we considered two config-
urations: VideoSAUR trained with DINO features [2] and
VideoSAUR trained with DINOv2 [4] features, which we
refer to as VideoSAURv2.

For the YouTube-VIS 2021 dataset, the authors of
VideoSAUR provided results for both configurations, so
we directly used the available checkpoints. However, for the
MOVi datasets, results and model for VideoSAUR trained
with DINOv2 features were not available. Therefore, we
trained VideoSAUR with the default configuration( match-
ing the resolution with SLOT CONTRAST) using DINOv2
features.

While for MOVI-E the default configuration with DI-
NOv2 lead to improved results, MOVi-C results were signifi-
cantly worse. Thus, we perform an extensive hyperparameter
tuning, experimenting with the weight of the temporal simi-
larity loss, temperature parameters, with and without feature
reconstruction loss added. We also tested various configu-
rations of keys, values, and output features from the Vision
Transformer. Despite these efforts, we could not achieve
performance comparable or better to VideoSAUR trained
with DINOv1 features. Our best performing VideoSAURv2
configuration (62.1 FG-ARI and 25.5 mBO) on MOVi-C is
obtained using temperature τ = 0.075 temporal similarity
loss weight α = 0.1 combined with feature reconstruction
loss. We also used DINOv2 ViT values features in contrast
to keys features used in the original VideoSAUR paper [9]
with DINOv1.

This discrepancy raises the question: why does
VideoSAURv2 work well on MOVi-E and YouTube-VIS but
not on simpler MOVi-C? We hypothesize that the presence of
camera motion in MOVi-E might contribute to the success of



Table S2. Temporal consistency on YouTube-VIS 2021.

Feat. Rec. + SAM2 SLOT CONTRAST + SAM2 VideoSAURv2 SLOT CONTRAST

FG-ARI 43.5 46.3 31.2 38.0
mBO 40.9 43.7 29.7 33.7

DINOv2 features in this context. To test this hypothesis, one
can evaluate VideoSAUR on the MOVi-D dataset, which is
similar in complexity to MOVi-E, but lacks camera motion.

SAM2 To compare how close current object-centric
methods are to supervised methods we compared SLOT
CONTRAST with SAM2 as a supervised zero-shot base-
line for temporal consistency. As SAM2 is trained on
a large dataset with dense video annotations (190.9K
masklets), using its tracking can improve segmentation
consistency (limited to objects discovered in the first frame).
However, while SAM2 can be used only for object tracking,
our method is not limited to tracking; it jointly does both
object discovery in videos and learns consistent object
representations with their masks. We evaluate SAM2’s
tracking capabilities by combining SAM2 with initial
frame object discovery using video-based DINOSAUR (i.e,
feature reconstruction objective on videos) and SLOT
CONTRAST object discovery (see Table S2). We show that
SLOT CONTRAST halves the gap between unsupervised
object-centric learning and zero-shot SAM2 (5.5 vs 12.3
FG-ARI), while using SLOT CONTRAST object discovery
is helpful for overall tracking with SAM2 (+2.8 FG-ARI).

Figure S2. SlotContrast vs SAM2 tracking. SAM2 is limited to
track only objects that appeared and discovered in the first frame.

In addition, in Fig. S2, we show limitation of such
baseline: detecting and tracking later appearing objects due
to missing initial masks. Evaluating SAM2 on YTVIS’s
first-frame objects gives 46.3 mBO (+6%), while for the
later-appearing objects, mBO drops to 7.82 (−34.48%).This
highlights SAM2’s strength in tracking first-frame objects
and its limitation in detecting and tracking later objects due
to missing initial masks.

SAVI++ We compared SLOT CONTRAST with weakly su-
pervised method SAVi++. We used improved SAVi similar
to VideoSAUR (see App. C.5 VideoSAUR), reaching 42.8
FG-ARI on MOVi-E. In contrast, unconditioned optical-flow
SAVi and depth SAVi++ are only 28.1 and 31.7 as reported
by Bao et al. [1]. While adding depth signal in SAVi++
could be treated as weak supervision, it indeed improves
SAVi 16.0 mBO, reaching 22.1 mBO, but still lagging be-
hind both VideoSAUR and SlotContrast.

H. Per-frame Scene Decomposition
In this section, we extend our comparison for the scene
decomposition task to the MOVi-C dataset. The results
are presented in Table S3. Our method outperforms all
state-of-the-art approaches by a significant margin, with the
sole exception of VideoSAUR, where we observe a minor
performance gap of just 0.4 points, indicating comparable
results.

Model Objective Image
FG-ARI

I
LSD [3] Image Rec. 50.5
DINOSAUR [6] Image Rec. 68.6

V +M Safadoust et al. [5] +GT Flow 73.8

V

STEVE [7] Video Rec. 51.9
VideoSAUR [9] Temp. Sim. 75.5
Feat. Rec. Video Rec. 64.0
SLOT CONTRAST Slot Contrast 75.1

Table S3. Quantitative Results on MOVi-C dataset in terms of per-
frame Image FG-ARI. The methods are grouped by the target data
they train on: only images (I), videos with motion segmentation
annotations (V +M), and only videos (V).

Finally, on the YTVIS dataset for the image de-
composition task, our method achieves a FG-ARI of
45.1 outperforming both VideoSAUR (40.1 FG-ARI) and
VideoSAURv2 (40.5 FG-ARI).

I. Instance-Awareness of Dense Features
In this section, we emphasize the need to adapt self-
supervised DINOv2 ViT features for consistent object dis-
covery. While DINOv2 features are primarily semantic, they
need refinement to identify specific instances effectively.
To facilitate this, we project the frozen features through a
multi-layer perceptron (MLP). This transformation maps the
features into a new latent space, enhancing their instance-
awareness and simplifying the Slot Attention task.

To show the effect of this adaptation on dense features,
we visualize the first Principal Component Analysis (PCA)
of both the frozen DINOv2 features and the newly learned



Table S4. Comparison of consistent object discovery evaluated
by Video FG-ARI. We compare SLOT CONTRAST with frozen
DINOv2 features and SLOT CONTRAST based on additionally
adapted with MLP dense features.

MOVi-C MOVi-E YouTube-VIS

Frozen DINOv2 Features 68.4 75.3 33.7
MLP Adapted Features 69.3 82.9 38.0

adapted dense features (see the results in Fig. S3). The
PCA plots clearly show that while DINO features cluster
similarly across different instances, the learned features are
more distinct, effectively capturing instance-specific details.

Further, we evaluate the effectiveness of these instance-
aware features by conducting experiments with both frozen
and learned features. The results, summarized in Table S4.
While MOVi-C, where most of the time different objects
have different semantic categories, adapting shows minor
improvement, the improvements are substantial for MOVi-E
and the real-world YouTube-VIS dataset. This demonstrates
the clear advantage of learning to adapt DINOv2 features to
be instance-aware in challenging real-world scenarios.

J. SlotFormer

To evaluate our model’s performance on the object dynamics
prediction task, we trained a SlotFormer [8] module on top
of our object-centric model. The code for SlotFormer was
taken from its official codebase1. SlotFormer consists of a
transformer encoder with input and output projection, and it
adds positional embeddings to the input along the temporal
dimension. It takes the slots from T burn-in frames and
then predicts the slots for the next K rollout frames in an
autoregressive manner. The model is trained by minimizing
the mean squared error between the predicted slots and the
ground-truth slots provided by the grouper. During training,
the entire architecture of the object-centric model is frozen,
and only the dynamics predictor module is optimized.

The hyperparameters used for training the models are
listed in Table S5. For MOVi-C, we used entire videos for
both training and validation, with the first fourteen frames
serving as burn-in frames, while the model predicted the slots
for the remaining frames. MOVi-E videos are also 24 frames
long, but we chose to evaluate performance on the middle
segment of the video because most objects remain static in
the final frames. To create a more challenging evaluation,
we selected the first 5 frames as burn-in and predicted the
slots for the next 10 frames. Finally, for YTVIS, we used the
first 10 frames as burn-in and had the model predict only the
following 5 frames due to the dataset’s complexity.

1https://github.com/pairlab/SlotFormer

Figure S3. First three Principal Components (combined as RGB
channels into one image for convenience) of frozen DINOv2
features and the newly learned dense features. DINOv2 features
PCA components are semantic grouping instances of the same
category (e.g., people or dogs) and body parts of the different
instances (e.g., heads or legs). In contrast, learned dense features
have instance-aware components, separating different instances
of the same category, thus making object discovery easier.

https://github.com/pairlab/SlotFormer


Table S5. Hyperparameters of SlotFormer for Main Results on
MOVi-C, MOVi-E, and YouTube-VIS 2021 Datasets

Hyperparameter MOVi-C MOVi-E YouTube-VIS

Training Steps 100k 100k 100k
Batch Size 128 128 128
Burn-in Steps T 14 5 10
Rollout Steps K 10 10 5
Latent Size De 128 256 128
Hidden Size of FFN 512 1024 512
Number of Layers Nτ 1 1 4
Dropout Rate 0.2 0.1 0.1
Peak Learning Rate 2× 10−4 2× 10−5 10−5

K. Details and Visual Examples on MOVI-C
Occluded

We created a targeted subset of the MOVi-C dataset that
focuses exclusively on fully occluded object sequences. The
MOVi-C dataset provides visibility scores for each object
in each frame, indicating the number of pixels the object
occupies. Using these scores, we refine the validation set to
include only sequences meeting the following conditions: an
object initially appears with a visibility score of at least n
pixels, then becomes fully occluded (visibility score drops
to 0 pixels), and subsequently reappears with a visibility
score of at least n pixels. To avoid including very small
objects or visual artifacts, we set n to a minimum of 400
pixels (less than 1% of the image pixels). After applying
this filtering criterion, we obtain a dataset of 60 sequences
where objects undergo complete occlusion and reappearance.
Visualizations are presented in Fig. S9.

L. Limitations and Failure Cases

While SLOT CONTRAST demonstrates significant improve-
ments over previous approaches, several limitations remain.
One key area for improvement is the sharpness of predicted
object masks, which could be tighter and sometimes occupy
some background parts (referred to as “bleeding” artifacts).
Another major challenge lies in ensuring consistency during
long-term full occlusions. Although SLOT CONTRAST often
reidentifies objects after such occlusions successfully, some
failure cases persist.

Additionally, SLOT CONTRAST lacks control over slot
behavior when objects disappear. Ideally, slots correspond-
ing to disappeared objects should remain inactive and not be
decoded, but the current implementation leaves this decision
to the decoder. Future work could address this by making
the behavior more explicit. Lastly, SLOT CONTRAST relies
on a predefined, fixed number of slots, which may limit its
flexibility. We visualize some of the failure cases in Fig. S11.

M. Additional Examples
In this section we present the following additional visualiza-
tions.
• Figure S4: Comparing SLOT CONTRAST to VideoSAUR

on YouTube-VIS 2021.
• Figure S5, Figure S6 and Figure S7: ablations of SLOT

CONTRAST components.
• Figure S8: Comparing SLOT CONTRAST and Feature

Reconstruction on MOVi-C object dynamics prediction.
• Figure S9: Comparing SLOT CONTRAST and Feature

Reconstruction on MOVi-C occluded subset.
• Figure S10: Comparing SLOT CONTRAST to VideoSAUR

on MOVi-E scene decomposition task.
• Figure S11: SLOT CONTRAST failure cases.



Figure S4. Qualitative comparison of SLOT CONTRAST with VideoSAURv2 on YouTube-VIS 2021 dataset.



Figure S5. Qualitative results of first frame slot initialization ablations on YouTube-VIS 2021 dataset.

Figure S6. Qualitative results of loss function ablations on YouTube-VIS 2021 dataset.



Figure S7. Qualitative comparison of SLOT CONTRAST with Features Reconstruction baseline with learned initialization on YouTube-VIS
2021 dataset.



Figure S8. Comparison of masks obtained by decoding the predicted slots from SlotFormer, trained on top of the feature reconstruction
baseline, versus SLOT CONTRAST, tested on the MOVi-C dataset.



Figure S9. Qualitative comparison of SLOT CONTRAST with Features Reconstruction on MOVi-C occluded subset.



Figure S10. Example frames comparing SLOT CONTRAST and VideoSAUR on the MOVi-E scene decomposition task. VideoSAUR
occasionally misses objects or splits one object into multiple slots, while these errors are avoided by SLOT CONTRAST.

Figure S11. The visualizations depict various failure cases encountered by SLOT CONTRAST. The first three rows illustrate examples
from the SLOT CONTRAST model trained on the YouTube-VIS 2021 dataset, while the last two rows are from the MOVi-C dataset. These
examples highlight challenges such as failures due to complete occlusions or examples of mask “bleeding” artifacts.
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[5] Sadra Safadoust and Fatma Güney. Multi-object discovery by
low-dimensional object motion. In ICCV, 2023. 4

[6] Maximilian Seitzer, Max Horn, Andrii Zadaianchuk, Dominik
Zietlow, Tianjun Xiao, Carl-Johann Simon-Gabriel, Tong
He, Zheng Zhang, Bernhard Schölkopf, Thomas Brox, and
Francesco Locatello. Bridging the gap to real-world object-
centric learning. In ICLR, 2023. 4

[7] Gautam Singh, Yi-Fu Wu, and Sungjin Ahn. Simple Unsuper-
vised Object-Centric Learning for Complex and Naturalistic
Videos. In NeurIPS, 2022. 4

[8] Ziyi Wu, Nikita Dvornik, Klaus Greff, Thomas Kipf, and Ani-
mesh Garg. Slotformer: Unsupervised visual dynamics simu-
lation with object-centric models. In ICLR, 2023. 5

[9] Andrii Zadaianchuk, Maximilian Seitzer, and Georg Martius.
Object-centric learning for real-world videos by predicting
temporal feature similarities. In Thirty-seventh Conference on
Neural Information Processing Systems (NeurIPS 2023), 2023.
3, 4


	Training Details
	Effect of Learned Initialization
	Implementation of Slot-Slot Contrastive Loss
	Feature Reconstruction Loss as Regularizer
	Dataset Details
	Metrics Details
	Baseline Details
	Per-frame Scene Decomposition
	Instance-Awareness of Dense Features
	SlotFormer
	Details and Visual Examples on MOVI-C Occluded
	Limitations and Failure Cases
	Additional Examples

