
Supplementary: Harnessing Frozen Unimodal Encoders for Flexible Multimodal
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Figure A.1. Compared to CLIP, our approach of aligning DINOv2-
MpNet achieves improved segmentation maps focusing on the rel-
evant objects in the multilingual setting.

A. Appendix
A.1. Unlocking parts of text and vision encoders

We evaluated our model with different parts of the vi-
sion and text encoders unlocked for DinoV2-ARL, shown
in Tab.A.2. Similar to Lit [36] we find that unlocking the
vision encoder (e.g., via BitFit [35]) reduced performance,
while full unlock resulted in unstable training. In contrast,
unlocking the text encoder or applying BitFittext slightly
improved performance with increased training costs.

A.2. Training CLIP with same dataset

We compare our approach against CLIP-ViT-L models
trained from scratch, and projector-only trained in Tab. A.3.
We see that our 20M dataset is not enough to train the CLIP
model (427M params) from scratch. Meanwhile, projector-
only training of CLIP improves over OpenAI CLIP on
COCO I2T and achieves competitive performance on Im-
agenet. Notably, none of the trained CLIP models outper-
form DINOv2-ARL.

A.3. Multi-lingual 0-shot Semantic Segmentation

The lower compute and paired data requirements of the
framework lead to application flexibility simply by swap-

ping the unimodal encoders. (see Sec. 6.2-6.4 in the
main paper). An additional advantage of this flexibility is
showcased in Fig. A.1 and Tab. A.1, where we use our
aligned DINOv2-MpNet to perform multi-lingual semantic
segmentation. Our segmentation scores stay consistent with
different languages while CLIP often fails on non-english
languages.

Table A.1. Multilingual Seg-
mentation IOU scores.

Language CLIP DINOv2-MpNet
EN 23.46 29.07
ES 18.86 28.69
ZH 8.46 28.06
FR 15.12 28.48
DE 21.30 27.91
RU 5.72 26.85

Table A.2. Unlocking Encoders.
Method (15 epochs) Imagenet COCO I2T
BitF itall 67.67 53.16
BitF ittext 74.58 56.72
Text unlock 75.90 56.62
Projectors 75.04 56.32

Table A.3. CLIP on our dataset.
Method (30 epochs) Imagenet COCO I2T
CLIPscratch 50.30 36.12
CLIPopenai 75.32 56.31
CLIPprojectors 72.10 59.04
DINOv2-ARL 76.45 60.14

A.4. Toy Example using Random Latent Model

Similar to Sec. 3.2 (main paper), here we investigate
whether semantically similar encoder embedding spaces
can be aligned through a simple projection transformation,
using a random latent model.

In our experiment, we generated 103 instances of two
vector sets, A and B, each containing 32 vectors of 16 di-
mensions. Following the approach in [12, 19], we mod-
eled the world using a latent distribution Z, with Image
and Text representations (A and B) as random independent
non-linear transformations from Z with additive noise. For
each sampled pair of A and B matrices, we calculated the
CKA and the minimum CLIP loss. The non-linear trans-
form was defined as a randomly initialized 2-layer MLP
with ReLU non-linearity and hidden dimensions signifi-
cantly larger than the input dimensions, ensuring it could
universally approximate the non-linear transformation [11].
Figure A.3 was used to generate each instance.

Figure A.2 illustrates the results of this experiment,
showing a clear negative correlation between CKA and min-
ima of the CLIP loss. As CKA increases, indicating greater
similarity between the similarity structures of A and B, the
minima of CLIP loss consistently decreases. Despite aris-
ing from a simplified experiment, the observed strong in-
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Figure A.2. CLIP Loss minima are negatively correlated to
CKA. We plot CKA vs CLIP Loss for random instances of A
and B.

# Init Z with random values scaled to [-1, 1]
Z = 2 * rand(n, d) - 1

# Define non-linear transforms T1 and T2
T1, T2 = NLTransform(d, d), NLTransform(d, d)

# Sample random weights w1 and w2
w1, w2 = rand(1), rand(1)

# Compute A and B using transforms
A = T1(Z) + w1 * rand(n, d)
B = T2(Z) + w2 * rand(n, d)

Figure A.3. Code for initializing A and B from a latent
world model Z. Random instances of A, B are generated using
random non-linear transformations of latent vector Z denoting
a representation of the real world.

verse relationship between CKA and CLIP loss provides
empirical support for using CKA as a predictor of align-
ment potential between embedding spaces. Since CLIP loss
is lower-bounded by mutual information, and mutual in-
formation is correlated with HSIC, higher CKA suggests
a stronger alignment between embeddings. This implies
that the achievable minima of CLIP loss is lower when the
embedding spaces already have a higher CKA, reflecting
greater mutual information and ease of alignment.

A.5. Embedding Graph structures visualized

To visually demonstrate how CKA represents similari-
ties in graph structures across different encoder spaces, we
conducted an experiment using the MSCOCO validation
set. We examined encoder outputs for DINOv2 and All-
Roberta-Large-v1, before and after projection, focusing on
relationships between formed clusters in both domains. For
each cluster, we identify COCO detection class and COCO
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Figure A.4. TSNE visualizations of encoder outputs for six COCO
detection classes. Left: DINOv2 (vision), Right: All-Roberta-
Large-v1 (text).

image-caption pairs where the image contained only the re-
spective class among its detection annotations. We then ex-
tracted encoder outputs for these samples from both vision
and text encoders, before and after applying our projection
layers, and applied the TSNE algorithm to visualize their
structure in a lower-dimensional space. For each visualiza-
tion, we pick 6 classes to highlight the shape similarities
between graphs of encoder spaces.

Figure A.4 shows the resulting TSNE visualizations
for the six selected classes across four conditions: vision
pre-projection, vision post-projection, text pre-projection,
and text post-projection. The visualizations reveal striking



Model N ImageNet ImageNetv2 Caltech Pets Cars Flowers Food Aircrafts SUN CUB UCF101

LAION-CLIP VIT-L 400M 72.7 65.4 92.5 91.5 89.6 73.0 90.0 24.6 70.9 71.4 71.6
OpenAI-CLIP VIT-L 400M 75.3 69.8 92.6 93.5 77.3 78.7 92.9 36.1 67.7 61.4 75.0
LiT L16L 112M 75.7 66.6 89.1 83.3 24.3 76.3 81.1 15.2 62.5 58.7 60.0
LilTDA-base 0.5M 15.9 12.9 37.6 7.2 1.6 1.1 13.3 1.7 25.6 2.3 19.1
LilTLwA-base 0.5M 14.4 12.1 42.3 4.8 1.3 2.1 12.3 1.6 26.5 1.4 26.6
DINOv2-MpNet (Ours) 20M 74.8 68.0 91.8 91.7 71.0 75.8 87.5 23.0 71.9 63.2 71.0
DINOv2-ARL(Ours) 20M 76.3 69.2 92.8 92.1 73.9 78.4 89.1 28.1 72.6 66.1 73.2

Table A.4. 0-shot domain transfer to classification datasets. We
compare the performance of our DINOv2-ARL projector model,
trained on a 20M dataset, against CLIP models from OpenAI and
LAION across various datasets. Despite the smaller training size,
our model achieves a 76.3% accuracy on ImageNet, outperforming
comparably sized CLIP models.

Model Flickr COCO
I2T T2I I2T T2I

LAION-CLIP VIT-L 87.6 70.2 59.7 43.0
OpenAI-CLIP VIT-L 85.2 64.9 56.3 36.5
LiT L16L 73.0 53.4 48.5 31.2
LilTDA-base 47.6 34.46 41.4 29.1
LilTLwA-base 56.8 41.7 47.0 33.7
DINOv2-MpNet (Ours) 84.6 71.2 58.0 42.6
DINOv2-ARL (Ours) 87.5 74.1 60.1 45.1

Table A.5. Image, Text Retrieval on COCO/Flickr30k. Our
model shows comparable text retrieval scores and significantly
better image retrieval results.

similarities in cluster shapes and relative positions across
the different encoder spaces, particularly before projection.
This visual similarity aligns with our quantitative CKA re-
sults, providing an intuitive illustration of how CKA cap-
tures structural similarities between different embedding
spaces.

A.6. Comparison to LiLT

Tables A.4 and A.5 report the zero-shot domain classifi-
cation and retrieval performance of LiLT models [13]. The
vision encoder is initialized with the DeiT base model [31],
and the text encoder is from SimCSE [9]. The LilTDA-
base model is trained by duplicating and appending the last
transformer layer, while only unlocking the last encoder
and projector layers. The LilTLwA-base model introduces
trainable layerwise adapters for both the vision and text en-
coders. LiLT public checkpoints are trained on 500k image-
caption pairs from the COCO dataset. However, LiLT’s per-
formance lags behind CLIP models and our DINOv2-ARL
projector model, primarily due to suboptimal encoder pairs
and limited concept coverage in the COCO training set for
alignment.

A.7. Encoder Pairs Ablations

Similar to Sec 5.1 (main paper), we train our projec-
tor configurations on various combinations of unimodal en-
coders using the COCO dataset and evaluate image/text re-
trieval accuracies on the Flickr30k test set, plotting these

against CKA scores. In Fig. A.5 both the Image and Text
retrieval accuracies shows a strong correlation with CKA
suggesting that CKA can effectively predict which encoder
pairs will align well with projector training.

A naive approach to choosing the best encoder pair is
to chose the unimodal encoders with highest performance
in their respective modalities, but it’s not straightforward
which benchmarks can be more predictive of ease of align-
ment. To demonstrate this, we consider the same ablation
as above, but with DINOv2 and 14 different text encoders
from the SentenceTransformers [26] library. We consider
2 types of text model benchmarks. 1. Sentence Embedding
task or Semantic Textual Similarity (STS) is the task of eval-
uating how similar two texts are in terms of meaning. These
models take a source sentence and a list of sentences and re-
turn a list of similarity scores. The task is evaluated using
Spearman’s Rank Correlation. We average over 14 datasets
reported in [26, 27]. 2. Semantic Search (SS) is the task
of retrieving relevant documents or passages based on the
semantic content of a query. Rather than relying solely on
keyword matching, semantic search models generate em-
beddings for both the query and the documents, allowing for
retrieval based on contextual and conceptual similarity and
is evaluated using Normalized Discounted Cumulative Gain
(nDCG), which measure the relevance of retrieved docu-
ments in ranked lists. We average over 6 datasets reported
in [26, 27].

In Fig A.6, we see that there is a clear correlation (pear-
son corr.=0.81, p=4e-4) between downstream Flickr30k
performance and CKA on the COCO val set, suggesting
that CKA is a better predictor of ease of alignment. The av-
erage unimodal performance (pearson corr.=0.47, p=0.08),
as well as the semantic search (SS) performance (pear-
son corr.=0.13, p=0.65), are not predictive of the ease of
alignment. Meanwhile, Sentence Task Similarity (STS)
tasks are more predictive of downstream alignment (pear-
son corr.=0.72, p=0.003) but still worse than CKA and it’s
not intuitive which unimodal performance is to be consid-
ered.

A.8. Data Curation Implementation Details

We streamline our class collection process by precom-
puting CLIP text embeddings for LAION-400M and CLIP
image prototype embeddings for various concepts, allowing
us to run different collection methods without needing to re-
compute embeddings. The embedding process takes just 12
hours on two nodes with 4 A6000 GPUs each. Class-level
collection is performed using GPU-accelerated PyTorch
code on a single GPU, completing in under an hour. While
image-to-image-prototype collection, as in [22], could yield
higher-quality results, it demands significantly more GPU
resources due to the need to create CLIP embeddings for all
LAION-400M images. We find that caption-image-concept
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Encoder Legend
TE: clip-vit-large-patch14
TE: para-MiniLM-L12-v2
TE: all-distilroberta-v1
TE: all-mpnet-base-v2
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TE: para-TinyBERT-L6-v2
TE: all-mpnet-base-v1
TE: para-MiniLM-L3-v2
TE: all-roberta-large-v1
VE: DINOv2

VE: ViT-AugReg-IN21k
VE: ConvNeXT-IN21k
VE: ConvNeXT-IN1k
Size: Tiny

Size: Small
Size: Base
Size: Large
Size: Giant

Figure A.5. Retrieval performance vs. CKA for different en-
coder pairs. Text/Image retrieval accuracies on Flickr30k are
compared to CKA, calculated on the COCO val set. Models
trained on COCO train set. A clear correlation exists between
CKA and alignment quality (Pearson correlation = 0.92, p = 2.1e-
7), as reflected in retrieval accuracies.
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Figure A.6. Retrieval performance vs. text model performance
for DINOv2 and different text encoders. Text/Image retrieval
accuracies on Flickr30k are compared different text encoder tasks
performance. CKA is more closely correlated with retrieval per-
formance than text encoder downstream task performance on sen-
tence embedding tasks, semantic search tasks. Models trained on
COCO train set.

similarity performs well for image classification accuracy.
To support efficient multi-modal model training, we release
the LAION-CLASS-Collected parquets for research use.

A.9. Projector training details

We use the standard CLIP loss with a learnable temper-
ature parameter to train the projectors while keeping the vi-
sion and text encoders frozen. For our largest experiments
on the 20M MIX-CLASS-Collected dataset, we use an ef-
fective batch size of 16k and train for 30 epochs. Training
is done with a cosine learning rate scheduler, ramping up
to 1e-3 in the first epoch. Additional hyperparameters are
detailed in the table in the appendix. The training process
takes 50 hours on a node with 8 A100 GPUs.

A.10. 0-shot Segmentation Evaluation

In DINOV2-ARL, we perform 0-shot segmentation by
computing cosine similarities between each patch and all
the ground truth classes and subsequently upscaling to the
target size. Each patch is then classified into a corre-
sponding class. Consistent with previous studies, the in-
tersection over union (IoU) is computed solely for the fore-
ground classes. In the zero-shot segmentation process of

CLIP models, we employ a technique similar to [37] to
alleviate the opposite visualization problem in CLIP mod-
els [16]. The patch embeddings from the penultimate layer
are passed through the value layer and output MLP of the fi-
nal self-attention block, followed by projection into the joint
embedding space using the vision projector. Meanwhile,
our DINOv2-ARL model considers patch embeddings pro-
jected into the joint embedding space by the patch projector
and augments them with the projected CLS token in a resid-
ual manner.

A.11. Multi-Lingual Full Results

Another significant advantage of using only Projectors
to align modalities is the ability to swap the text encoder
with multi-lingual encoders trained on various languages,
thus potentially extending a CLIP model to accommodate
any language. This feature is particularly beneficial for low-
resource languages. We demonstrate the feasibility of this
approach by training projectors to align the DINOv2 visual
encoder with the paraphrase-multilingual-v2 text encoder,
using a dataset consisting solely of English image-caption
pairs. We selected this specific text encoder as it showed the
highest compatibility in terms of CKA with DINOv2. Sub-
sequently, we evaluated the performance of our model on
multi-lingual image retrieval using the XTD dataset [1] and
on multi-lingual image classification using the ImageNet
dataset. For multi-lingual classification, we translate our
VDT prompts [20] to the languages being considered using
the nllb-700M model [6] and then use the same prompts for
all the models being considered including ours.

For both multi-lingual classification and retrieval tasks,
our comparisons are structured into two categories as de-
lineated in Table A.7 and Table A.6. The lower sections
of each of these tables list models trained exclusively with
English captions, more specifically the CLIP-VIT-L mod-
els from OpenAI and LAION trained on 400 million image
caption pairs of WIT dataset and LAION400M dataset re-
spectively. The upper sections of these tables feature mod-
els trained with translated captions, including those employ-
ing contrastive training with multi-lingual image-caption
pairs such as CLIP-models based on the LAION5B multi-
lingual dataset, which contains image-caption pairs in over
100 languages. We also compare against, M-CLIP [4] mod-
els that are trained using English and translated captions
to align a multi-lingual text encoder with CLIP’s original
text encoder through contrastive learning, thereby enhanc-
ing performance on multi-lingual tasks. Additionally we
also compare against the NLLB-CLIP [33] models devel-
oped through LiT [36] techniques, coupling a frozen CLIP
visual encoder with an unfrozen multi-lingual text encoder
using translated captions from the smaller LAION-COCO
dataset. We compare against only model sizes of up to ViT-
Large for fair comparison.



Retrieval results: Our model DINOv2-MpNet trained
only on English image,caption pairs outperforms all other
CLIP models trained only on English image caption pairs,
by a large margin of over 43 % on average retrieval perfor-
mance over 10 languages. We also outperform the next best
performing English CLIP model trained on LAION400m
English caption retrieval by over 6 percent. On Latin script
languages the CLIP models have decent performance while
it falls significantly for non Latin languages like JP, KO,
PL, RU, TR, and ZH. This is mainly because these models
were trained using an English only tokenizer which results
in unknown token for most characters of these languages.
However our DINOv2-MpNet projector model maintains
competitive performance on all languages both Latin script
and non Latin script even when compared against models
specifically trained using multi-lingual data (Upper half of
the table). Amongst the multi-lingual trained CLIP mod-
els we perform better than laion5b trained xlm-roberta-
base-VitB32 by 4.5 percent. It is to be noted here that
we only use 20 million Image caption pairs for alignment
while LAION5B has over 5B image-caption pairs from
over 100 languages and multi-lingual webli has over 30B
image-caption pairs from over 100 languages. It is to be
noted that our DINOv2-Mpnet is also competitive with
M-CLIP model XLM-Roberta-Large-Vit-B-16Plus(56.1 vs
57.7) which has been trained using translated English sen-
tences of over 175 million data points to over 100 lan-
guages, and 3M translated image, caption pairs from CC3m.

Classification results: We see a similar trend when we
compare our DINOv2-MpNet projector model against CLIP
baselines(lower section), and multi-lingual baselines (up-
per section) on multi-lingual imagenet classification in Ta-
ble. Our model showcases competitive performance to that
of OpenAI-clip model while beating LAION400m trained
ViT-Large on english Imagenet, while performing signif-
icantly better on all other languages considered (over 24
percent better on 8 language average). When compared
with models trained with multi-lingual data, our model out-
performs both nllb-clip models as well as M-CLIP mod-
els, beating the next best performing model M-CLIP/XLM-
Roberta-Large-Vit-L-14 by over 3 percent despite not train-
ing using any multi-lingual text data. We believe that
training using translated image-caption pairs of our dataset
would further improve the performance of our method, and
we leave this as a future work. The main advantage of
training using our methods is that we can get highly porfor-
mant CLIP-like models using much lesser amount of image-
caption pairs, (more than 20x lesser) resulting in quick
adaptation to low resource languages given that a multi-
lingual text encoder exists for that language.

model EN DE ES FR IT JP KO PL RU TR ZH average

nllb-clip-base@v1 47.2 43.3 44.1 45.0 44.7 37.9 39.4 45.5 40.6 41.2 41.1 42.3
M-CLIP/XLM-Roberta-Large-Vit-B-32 48.5 46.9 46.4 46.1 45.8 35.0 36.9 48.0 43.2 45.7 45.4 43.9
M-CLIP/XLM-Roberta-Large-Vit-L-14 56.3 52.2 52.7 51.8 53.6 41.5 42.5 54.1 48.4 52.7 53.5 50.3
xlm-roberta-base-ViT-B-32@laion5b 63.2 54.5 54.6 55.7 55.7 47.1 43.8 55.5 50.3 48.2 50.8 51.6
nllb-clip-large@v1 59.9 56.5 56.7 56.0 55.5 49.3 51.7 57.4 50.4 56.0 52.3 54.2
M-CLIP/XLM-Roberta-Large-Vit-B-16Plus 63.2 61.4 59.8 59.3 61.0 48.3 49.8 64.0 54.8 59.6 58.8 57.7

ViT-L-14@laion400m e31 64.5 26.7 31.4 38.3 26.6 1.4 0.4 4.8 1.7 4.1 1.0 13.6
openai/clip-vit-large-patch14 59.4 19.9 26.6 28.5 19.2 4.1 0.3 3.9 1.3 2.6 0.7 10.7
DINOv2-MpNet (Ours) 70.7 60.6 59.0 60.6 60.7 45.6 49.8 58.3 52.7 55.8 57.9 56.1

Table A.6. Multilingual image-caption retrieval performance on
XTD dataset. DINOv2-MpNet outperforms many baselines de-
spite English-only training. Upper: multilingual-trained models;
Lower: English-only trained models.

model EN AR ES FR DE JP ZH RU average

nllb-clip-base@v1 25.4 20.4 23.9 23.9 23.3 21.7 20.3 23.0 22.4
nllb-clip-large@v1 39.1 30.1 36.5 36.0 36.2 32.0 29.0 33.9 33.4
M-CLIP/XLM-Roberta-Large-Vit-B-32 46.2 33.4 43.7 43.3 43.3 31.6 29.1 38.8 37.6
M-CLIP/XLM-Roberta-Large-Vit-B-16Plus 48.0 35.1 46.6 45.4 46.1 32.9 31.3 40.3 39.7
xlm-roberta-base-ViT-B-32@laion5b 63.0 29.0 53.4 53.8 55.8 37.3 26.8 40.3 42.3
M-CLIP/XLM-Roberta-Large-Vit-L-14 54.7 40.0 51.9 51.6 51.9 37.2 35.2 47.4 45.0

ViT-L-14@laion400m e32 72.3 6.4 44.7 49.9 48.2 2.7 2.3 4.5 22.7
openai/clip-vit-large-patch14 75.6 6.7 46.2 49.6 46.7 6.6 2.2 3.5 23.1
DINOv2-MpNet (Ours) 73.4 38.0 56.8 58.3 61.6 43.2 33.3 49.3 48.6

Table A.7. Multi-lingual classification. Classification perfor-
mance comparison of DINOv2-MpNet and various CLIP mod-
els and multilingual baselines on multilingual ImageNet. Our
DINOv2-MpNet model trained only on English data outperforms
even models trained on multi-lingual data. The upper half of the
table lists models trained on multiple languages, while the lower
half lists models trained only on English data. The models are
evaluated on translations of the labels and the prompts made using
nllb-200-distilled-600M translation model. [6]
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Figure A.7. Performance scales with higher amounts of ran-
domly sampled LAION data The performance scales with higher
amounts of randomly sample data from LAION400M, but very
slowly, highlighting the need for a densely covered and high qual-
ity dataset when training projectors only to align modalities.

A.12. Dataset scale

Figure A.7 illustrates that while performance scales with
an increasing number of randomly sampled data points from
the LAION400M dataset, the rate of improvement dimin-
ishes, highlighting the critical need for densely covered
and high-quality datasets when training projectors to align
modalities. Additionally, the comparative performance of
MIX-CLASS-Collected data reveals that datasets curated
with more focused criteria can lead to better performance
gains than simply increasing the volume of data. This un-
derscores the importance of prioritizing dataset quality over
quantity, especially given the observed diminishing returns
when using larger data sizes for projector-based alignment.



Model All SCM All Neg All Pick5-SCM All Pick5-Neg Base Neg All Hard-Negs
CLIP Baseline 40.06% 60.79% 11.21% 24.06% 67.56% 41.34%
DINOv2-ARL (Ours) 29.33% 64.36% 9.35% 21.39% 81.94% 61.10%

Table A.8. Performance comparison on DCI dataset benchmarks

A.13. sDCI benchmark results

We evaluate our method on the Densely Captioned Im-
ages (DCI) dataset [32], which contains 7,805 images
with mask-aligned descriptions averaging over 1,000 words
each. To accommodate current models’ token limits, the au-
thors also provide sDCI, a summarized version with CLIP-
compatible 77-token captions generated by LLMs.

sDCI introduces several benchmarks:

• All SCM (Subcrop-Caption Matching): Matches cap-
tions to corresponding image subcrops.

• All Neg: Distinguishes between positive captions and
LLM-generated negatives.

• All Pick5-SCM: Similar to All SCM, but uses multiple
captions per subcrop.

• All Pick5-Neg: Distinguishes between multiple posi-
tive captions and a negative.

• Base Neg: Focuses on caption-negative distinction for
full images only.

• All Hard-Negs: Uses the most challenging LLM-
generated negatives.

We tested our DINOv2-ARL model on the sDCI dataset
benchmarks. Table A.8 presents our results alongside the
CLip baseline. Our method demonstrates competitive per-
formance compared to the CLIP baseline across several DCI
benchmarks.

In the Subcrop-Caption Matching tasks (All SCM and
All Pick5-SCM), our model performs slightly below the
CLIP baseline. This suggests that there is room for im-
provement in our approach when it comes to distinguishing
between the different parts that compose an image.

However, our model shows notable improvements in the
negative detection tasks. We outperform CLIP on All Neg
(64.36% vs. 60.79%), Base Neg (81.94% vs. 67.56%), and
All Hard-Negs (61.10% vs. 41.34%). These results demon-
strate the potential of our method in aligning vision and
language models for a fine-grained understanding of image
content, especially in scenarios requiring robust discrimina-
tion between relevant and irrelevant captions. Future work
could focus on improving the model’s performance on sub-
crop caption matching tasks while maintaining its strong ca-
pabilities in negative detection.

A.14. 0-Shot Classification and Retrieval Evalua-
tion Datasets

To evaluate the performance of our DINOv2-ARL pro-
jector model and compare it with baseline CLIP models, we
utilized a diverse set of datasets for zero-shot classification
and retrieval tasks. These datasets span various domains
and challenge the models’ ability to generalize across dif-
ferent visual concepts.

For zero-shot classification, we employed the following
datasets:

• ImageNet [7]: A large-scale dataset with 1000 object
categories, widely used as a benchmark for image clas-
sification tasks. It contains over 1.2 million training
images and 50,000 validation images, with each image
labeled with one of 1000 object classes.

• ImageNetV2 [25]: A newer version of ImageNet de-
signed to test the robustness of models trained on the
original ImageNet. It features 10,000 new test images
collected using the same procedure as the original, but
addressing certain biases in the original dataset.

• Caltech101 [15]: A dataset containing pictures of ob-
jects belonging to 101 categories, plus a background
category. It includes about 40 to 800 images per cat-
egory, with most categories having about 50 images.
The dataset is known for its high intra-class variabil-
ity.

• Oxford-IIIT Pet [23]: A 37-category pet dataset with
roughly 200 images for each class, featuring different
breeds of cats and dogs. It includes pixel-level trimap
segmentations and breed-level labels for each image.

• Stanford Cars [14]: A dataset of 196 car classes, total-
ing 16,185 images. Classes are at the level of Make,
Model, Year (e.g., 2012 Tesla Model S). It includes
8,144 training images and 8,041 testing images, with
bounding box annotations.

• Oxford Flowers102 [21]: A 102 category dataset con-
sisting of 102 flower categories common to the UK. It
contains 40 to 258 images per class and provides seg-
mentation data for each image. The dataset is particu-
larly challenging due to the fine-grained nature of the
categories.

• Food101 [3]: A large dataset of 101 food categories,
with 101,000 images. It features 1000 images per food
class, with 250 test images and 750 training images per
class. The training images are not manually cleaned,
adding a level of noise to the dataset.

• FGVC Aircraft [18]: A fine-grained visual classifica-
tion dataset with 10,200 images of aircraft, spanning



100 aircraft models. Each model is associated with a
specific variant, manufacturer, family, and collection.
The dataset includes 6,667 training images and 3,333
test images.

• SUN397 [28]: A scene recognition dataset with 397
categories and 108,754 images, covering a large va-
riety of environmental scenes under various lighting
conditions. It provides at least 100 images per class
and has been used extensively for scene recognition
tasks.

• Caltech-UCSD Birds-200-2011 (CUB) [34]: A dataset
for fine-grained image classification with 200 bird
species, containing 11,788 images. Each image has
detailed annotations including 15 part locations, 312
binary attributes, and 1 bounding box. It’s widely used
for fine-grained visual categorization research.

• UCF101 [29]: An action recognition dataset with 101
action categories, consisting of realistic action videos
collected from YouTube. It contains 13,320 videos
from 101 action categories, with videos exhibiting
large variations in camera motion, object appearance
and pose, illumination conditions, and more.

For zero-shot image-text retrieval, we used:

• Flickr30k [24]: A dataset containing 31,783 images
collected from Flickr, each paired with 5 crowd-
sourced captions. It focuses on describing the objects
and actions in everyday scenes. The dataset is split
into 29,783 training images, 1000 validation images,
and 1000 test images.

• COCO [17]: A large-scale dataset for object detec-
tion, segmentation, and captioning, which we use for
its image-caption pairs in the retrieval task. It fea-
tures over 330,000 images, each with 5 captions. The
dataset includes 80 object categories and instance seg-
mentation masks, making it versatile for various com-
puter vision tasks.

These datasets comprehensively evaluate a model’s abil-
ity to perform zero-shot classification across various do-
mains and its capacity for cross-modal retrieval. By us-
ing this diverse set of benchmarks, we can assess the gen-
eralization capabilities of our approach compared to exist-
ing CLIP models. We use Visually Descriptive Class-Wise
prompts from [20] to enable the unimodal-text encoder in
our DINOv2-ARL projector model to better identify the
zero-shot classes of the downstream datasets.

A.14.1 Concept Coverage Collection datasets

We use a few shot examples from 14 curated computer vi-
sion datasets to construct our Concept Image prototypes to
curate the images from our uncurated data pool. The 14
curated datasets are described as follows.

• BirdSnap [2]: A fine-grained dataset consisting of
49,829 images of 500 North American bird species.
The images are annotated with species labels, and the
dataset is primarily used for species classification and
fine-grained recognition tasks.

• Caltech101 [15]: A dataset containing pictures of ob-
jects belonging to 101 categories, plus a background
category. It includes about 40 to 800 images per cat-
egory, with most categories having about 50 images.
The dataset is known for its high intra-class variabil-
ity.

• EuroSAT [10]: A satellite image dataset with 10 cate-
gories related to land use classification (e.g., forests,
rivers, residential areas). It contains 27,000 labeled
images, with 2700 images per class, widely used in
remote sensing and geospatial tasks.

• FGVC Aircraft [18]: A fine-grained classification
dataset with 10,000 images of 100 aircraft model vari-
ants from 70 manufacturers. It is used for distinguish-
ing between visually similar objects in fine-grained
recognition tasks.

• Flowers102 [21]: A dataset containing 102 flower cat-
egories, commonly used for fine-grained classification
tasks. It has a total of 8,189 images, with 40 to 258
images per category, and is organized into a training,
validation, and test set.

• Food101 [3]: A dataset containing 101,000 images of
101 food categories. Each category has 750 training
images and 250 test images, commonly used for food
classification and recognition tasks.

• GTSRB [30]: The German Traffic Sign Recognition
Benchmark dataset, containing over 50,000 images of
43 different traffic sign classes. It is designed for
multi-class classification tasks in the context of traffic
sign recognition.

• ImageNet [7]: A large-scale dataset with 1,000 object
categories, widely used as a benchmark for image clas-
sification tasks. It contains over 1.2 million training
images and 50,000 validation images, with each image
labeled with one of 1,000 object classes.

• Oxford Pets [23]: A dataset of 7,349 images, contain-
ing 37 categories of pets (both cats and dogs). Each



image is annotated with species and breed information,
commonly used for image classification and segmenta-
tion tasks.

• RESISC45 [5]: A dataset of remote sensing images
used for scene classification, containing 31,500 images
across 45 scene classes. Each class has 700 images
with variations in resolution, scale, and orientation.

• Stanford Cars [14]: A dataset with 16,185 images of
196 car models, annotated by make, model, and year.
The dataset is designed for fine-grained classification
and recognition tasks of vehicles.

• Pascal VOC 2007 [8]: A dataset for object detection,
segmentation, and classification, containing 9,963 im-
ages of 20 object categories. It is widely used for
benchmarking models in computer vision tasks.

• SUN397 [28]: A large-scale scene understanding
dataset with 397 categories and 108,754 images. It
covers a wide range of environments, from natural to
man-made scenes, commonly used for scene classifi-
cation tasks.

• UCF101 [29]: A video dataset consisting of 13,320
videos across 101 human action categories. It is widely
used for action recognition tasks in video analysis and
computer vision research.
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