
A Flag Decomposition for Hierarchical Datasets

Supplementary Material

We provide alternative methods for flag recovery
in Sec. 1, proofs of each proposition in Sec. 2, a discussion
of block matrix decompositions in Sec. 3, a formal presen-
tation of the Flag-BMGS algorithm in Sec. 4, and additional
details for the results in Sec. 5.

1. SVD and QR for Flag Recovery

The SVD and QR decomposition recover individual sub-
spaces of the flag [Qi] and, in certain hierarchies, recover
the entire flag [[Q]]. We first discuss SVD and QR for sub-
space recovery, then we provide examples of using each
method for flag recovery.

1.1. Subspace recovery

SVD and QR decomposition can be used to solve the opti-
mization problem

Qi = argmin
X∈St(mi,n)

∑
j∈Bj

∥ΠX⊥ΠQ⊥
i−1
· · ·ΠQ⊥

1
d̃j∥22

with mi = rank(ΠX⊥ΠQ⊥
i−1
· · ·ΠQ⊥

1
Bi). The QR de-

composition with pivoting outputs ΠQ⊥
i−1
· · ·ΠQ⊥

1
Bi =

Q′
iR

′
iP

′
i
⊤. We then assign the columns of Qi to columns

of Q′
i associated with non-zero rows of R′

i. Using the SVD,
we have ΠQ⊥

i−1
· · ·ΠQ⊥

1
Bi = UiΣiV

⊤
i . Then we assign

the columns of Qi to the columns of Ui associated with
non-zero singular values.

1.2. Flag recovery

Both the SVD and QR decomposition can be used for flag
recovery for certain column hierarchies and flag types. In
both examples, we take D ∈ Rn×p.

Example 1.1 (QR decomposition). For a tall and skinny
(p ≤ n) D with the column hierarchy {1, . . . , p1} ⊂
{1, . . . , p2} ⊂ · · · ⊂ {1, . . . , p} and the flag type is
(p1, p2, . . . , p;n), the QR decomposition D = QR outputs
the hierarchy-preserving flag [[Q]] ∈ FL(p1, p2, . . . , p;n)
because [q1|q2| · · · |qi] = [d1|d2| · · · |di] = [DAi] for
i = 1, 2 . . . , k.

Example 1.2 (SVD). Suppose D has the column hierarchy
{1, . . . , p} and the rank nk. The SVD of D is D = UΣV⊤.
Let Q be the nk left singular vectors (columns of U) associ-
ated with non-zero singular values. Then [[Q]] ∈ FL(nk;n)
is a hierarchy-preserving flag because [Q] = [D].

2. Theoretical Justifications
We prove each proposition from the Methods section. For
the sake of flow, we re-state the propositions from the Meth-
ods section before providing the proofs. Throughout these
justifications we use rank(D) as the dimension of the col-
umn space of D. This is equivalent to the dimension of the
subspace spanned by the columns of D, denoted dim([D])

Proposition 1. Suppose A1 ⊂ A2 ⊂ · · · ⊂ Ak is
a column hierarchy for D. Then there exists Q =
[Q1 |Q2 | · · · |Qk] that are coordinates for the flag [[Q]] ∈
FL(n1, n2, . . . , nk;n) where ni = rank(DAi

) that satis-
fies [Qi] = [ΠQ⊥

i−1
· · ·ΠQ⊥

1
Bi] and the projection prop-

erty (for i = 1, 2 . . . , k):

ΠQ⊥
i
ΠQ⊥

i−1
· · ·ΠQ⊥

1
Bi = 0. (1)

Proof. For i = 1 define m1 = n1 = rank(B1) =
rank(DA1

). Now define C1 = B1 and Q1 ∈ St(m1, n)
whose columns are an orthonormal basis for the column
space of C1, specifically [Q1] = [C1].

For ease of notation, denote Q:i = [Q1|Q2| · · · |Qi].
Define (for i = 2, 3, . . . , k) the projector onto the null space
of [Q1,Q2, . . . ,Qi], as

ΠQ⊥
:i
= I−Q:iQ

⊤
:i . (2)

We use this to define Ci through

Ci = ΠQ⊥
:i−1

Bi (3)

and Qi ∈ St(mi, n) so that [Qi] = [Ci].
We use mathematical induction to prove the following:

1. Non-zero Ci ̸= 0,
2. Coordinates Q:i = [Q1|Q2| · · · |Qi] is in Stiefel coordi-

nates (e.g., Q:iQ
⊤
:i = I),

3. Hierarchy [B1,B2, . . . ,Bi] = [Q1,Q2, . . . ,Qi],
4. Projection property ΠQ⊥

i
· · ·ΠQ⊥

1
Bi = 0 and

ΠQ⊥
i
· · ·ΠQ⊥

1
= ΠQ⊥

:i
,

5. Dimensions Qi ∈ St(mi, n) with mi = ni−ni−1 where
ni = rank(DAi

).
We proceed with the base case i = 1. (1) C1 = B1 =

DA1 ̸= 0. (2) Q1 ∈ St(n1, n) because its columns
form an orthonormal basis for [C1]. (3) [B1] = [C1] =
[Q1]. (4) Since ΠQ⊥

1
projects into the nullspace of Q1

and [Q1] = [B1], we have ΠQ⊥
1
B1 = 0. (5) Since

m1 = n1, n1 = dim([Q1]) = dim([B1]) = dim([DA1
]),

and the columns of Q1 form an orthonormal basis, we have
Q1 ∈ St(m1, n).

Fix some j ∈ {2, 3, . . . , k}. Suppose statements (1-5)
hold true for all i < j.
1. Non-zero. By way of contradiction, assume Cj = 0.
Then ΠQ⊥

:j−1
Bj = 0. This means each column of Bj is

in the column space of Q:j−1. In terms of subspaces, this
implies

[Bj] ⊆ [Q1,Q2, . . . ,Qj−1] = [B1,B2, . . . ,Bj−1] (4)

where the second equality follows from the induction hy-
pothesis part 3. Eq. (4) implies

dim([B1,B2, . . . ,Bj]) = dim([B1,B2, . . . ,Bj−1]). (5)

By construction (see first paragraph of Methods section),

dim([DAj
]) = dim([B1,B2, . . . ,Bj]). (6)

So Eqs. (5) and (6) imply rank(DAj
) = rank(DAj−1

).
This contradicts the assumption of a column hierarchy for
D, namely rank(DAj) > rank(DAj−1).
2. Coordinates. It suffices to show

Q⊤
j Q:j−1 = [Q⊤

j Q1|Q⊤
j Q2| · · · |Q⊤

j Qj−1] = 0 (7)

which is equivalent to showing [Qj] is orthogonal to
[Q1,Q2, . . . ,Qj−1]. By construction,

[Qj] = [Cj] = [ΠQ⊥
:j−1

Bj] (8)

which is orthogonal to [Q1, . . . ,Qj−1].
3. Hierarchy. Using Q⊤

j Q:j−1 = 0, we have

ΠQ⊥
:j
= I−Q:jQ

⊤
:j

= I−
j∑

ℓ=1

QℓQ
⊤
ℓ

= I−QjQ
⊤
j −Q:j−1Q

⊤
:j−1

= I−QjQ
⊤
j −Q:j−1Q

⊤
:j−1

+Qj Q
⊤
j Q:j−1︸ ︷︷ ︸

0

Q⊤
:j−1,

= (I−QjQ
⊤
j)(I−Q:j−1Q

⊤
:j−1),

= ΠQ⊥
j
ΠQ⊥

:j−1
.

(9)

By Eq. (9) and the construction [Qj] = [ΠQ⊥
:j−1

Bj], we
have

0 = ΠQ⊥
j
ΠQ⊥

:j−1
Bj

= ΠQ⊥
:j
Bj ,

= (I−Q:jQ
⊤
:j)Bj ,

Bj = Q:jQ
⊤
:jBj .

Thus [Bj] ⊆ [Q1,Q2, · · · ,Qj]. By the induction hy-
pothesis (3), [B1, . . . ,Bj−1] = [Q1, . . . ,Qj−1]. So
[B1,B2, . . . ,Bj] ⊆ [Q1,Q2, . . . ,Qj].

In contrast [Bj] ⊇ [ΠQ⊥
:j−1

Bj] = [Cj] = [Qj].
So, also using [B1, . . . ,Bj−1] = [Q1, . . . ,Qj−1] (in-
duction hypothesis 3), we have [B1,B2, . . . ,Bj] ⊇
[Q1,Q2, . . . ,Qj].
4. Projection property. Using Eq. (9) and the induction
hypothesis (4) that ΠQ⊥

:j−1
= ΠQ⊥

j−1
· · ·ΠQ⊥

1
, we have

ΠQ⊥
:j
= ΠQ⊥

j
ΠQ⊥

:j−1
,

= ΠQ⊥
j
ΠQ⊥

j−1
· · ·ΠQ⊥

1
.

(10)

By construction [Qj] = [ΠQ⊥
:j−1

Bj]. Thus

ΠQ⊥
j
ΠQ⊥

:j−1
Bj = 0.

Using Eq. (10), we have

ΠQ⊥
j
ΠQ⊥

j−1
· · ·ΠQ⊥

1
Bj = 0.

5. Dimensions. By the induction hypothesis (5), Qi ∈
St(mi, n) for i = 1, 2, . . . , j − 1. So Q:j−1 ∈ St(nj−1, n)

with nj−1 =
∑j−1

i=1 mi. Let

nj = rank(DAj),

= dim([B1,B2, . . . ,Bj]),

= dim([Q1,Q2, . . . ,Qj]).

Thus Q:j ∈ Rn×nj and Qj ∈ Rn×mj with mj = nj −
nj−1. Qj has orthonormal columns by construction, so
Qj ∈ St(mj , n).

By way of mathematical induction, we have proven (1-
5) for all i = 1, 2, . . . , k. Specifically, given a column hi-
erarchy on D, we have found coordinates for a hierarchy-
preserving flag [[Q]] ∈ FL(n1, n2, . . . , nk;n) that satisfies
the projection property.

Although we can write Ri,j = Q⊤
i Bj for j ≥ i, an

equivalent definition is provided in Eq. (11) because it is
used in Alg. 2.

Proposition 2. Suppose A1 ⊂ A2 ⊂ · · · ⊂ Ak is a col-
umn hierarchy for D. Then there exists some hierarchy-
preserving [[Q]] ∈ FL(n1, n2, . . . , nk;n) (with ni =
rank(DAi

)) that satisfies the projection property of D and
can be used for a flag decomposition of D with

Ri,j =

{
Q⊤

i ΠQ⊥
i−1
· · ·ΠQ⊥

1
Bi, i = j

Q⊤
i ΠQ⊥

i−1
· · ·ΠQ⊥

1
Bj , i < j

,

Pi =
[
ebi,1 | ebi,2 | · · · | ebi,|Bi|

] (11)

where {bi,j}|Bi|
j=1 = Bi and eb is the bi,j

th standard basis
vector.

Proof. We define the permutation matrix P =
[P1|P2| · · · |Pk] in Eq. (11). Specifically, we as-
sign the non-zero values in each column of Pi to
be the index of each element in Bi. In summary,
Pi is defined so that DP = [B1|B2| · · · |Bk] and
D = B = [B1|B2| · · · |Bk]P

⊤.
We find the coordinates [Q1|Q2| · · · |Qk] ∈

St(nk, n) for the hierarchy-preserving flag [[Q]] ∈
FL(n1, n2, . . . , nk;n) with nk = rank(DAi

) that satisfies
the projection property using Prop. 1.

Now, we aim to find R so that B = QR. Using the
projection property ΠQ⊥

j
· · ·ΠQ⊥

1
Bj = 0 and the identity

ΠQ⊥
j
· · ·ΠQ⊥

1
= Π[Q1|···|Qj]⊥ from Eq. (10), we can write

Bj =

j∑
i=1

QiQ
⊤
i Bj =

j∑
i=1

QiRi,j . (12)

This is equivalent to the projection formulation of Ri,j

in Eq. (11) because (for i = 1, 2, . . . , k),

Q⊤
i ΠQ⊥

i−1
· · ·ΠQ⊥

1

= Q⊤
i Π[Qi−1|···|Q1]⊥ ,

= Q⊤
i (I− [Qi−1| · · · |Q1][Qi−1| · · · |Q1]

⊤),

= Q⊤
i −Q⊤

i [Qi−1| · · · |Q1]︸ ︷︷ ︸
0

[Qi−1| · · · |Q1]
⊤,

= Q⊤
i .

(13)

Stacking the results from Eqs. (12) and (13) into block ma-
trices gives B = QR with R defined in Eq. (11).

Proposition 3. A data matrix D admits a flag decomposi-
tion of type (n1, n2, · · · , nk;n) if and only if A1 ⊂ A2 ⊂
· · · ⊂ Ak is a column hierarchy for D.

Proof. We first tackle the forward direction. Suppose D
admits a flag decomposition with the hierarchyA1 ⊂ A2 ⊂
· · · ⊂ Ak. Then D = QRP⊤ and DP = QR because P
is a permutation matrix. Define

B = [B1|B2| · · · |Bk] = DP = QR. (14)

Since we have a flag decomposition, [[Q]] ∈
FL(n1, n2, . . . , nk;n) with Q = [Q1|Q2| · · · |Qk] ∈
St(nk, n). Since Q is in Stiefel coordinates we have
QT

j Qi = 0 for all j < i, so

dim([Q1,Q2, . . . ,Qi−1]) < dim([Q1,Q2, . . . ,Qi]).
(15)

Since [[Q]] is hierarchy preserving, for i = 1, 2, . . . , k we
have [B1,B2, . . . ,Bi] = [Q1,Q2, . . . ,Qi]. Using this and
Eq. (15), we have

dim([B1,B2, . . . ,Bi−1]) < dim([B1,B2, . . . ,Bi]).
(16)

By construction dim([B1,B2, . . . ,Bi]) = dim([DAi]).
So, using Eq. (16), we have shown dim([DAi−1]) <
dim([DAi

]) proving A1 ⊂ A2 ⊂ · · · ⊂ Ak is a column
hierarchy for D.

The backward direction is proved in Prop. 1 and 2.
Specifically, given a data matrix with an associated col-
umn hierarchy, Prop. 1 describes how to find a hierarchy-
preserving flag. Then Prop. 2 shows how to find the permu-
tation matrix P from the column hierarchy and the weight
matrix R from Q so that D = QRP⊤.

Recall the two optimization problems proposed in the
Methods section:

[[Q]] = argmin
[[X]]∈FL(n1,n2,...,nk;n)

k∑
i=1

∑
j∈Bi

∥ΠX⊥
i
· · ·ΠX⊥

1
d̃j∥qr,

(17)
Qi = argmin

X∈St(mi,n)

∑
j∈Bj

∥ΠX⊥ΠQ⊥
i−1
· · ·ΠQ⊥

1
d̃j∥qr. (18)

Proposition 4 (Block rotational ambiguity). Given the FD
D = QRP⊤, any other Stiefel coordinates for the flag [[Q]]
produce an FD of D (via Prop. 2). Furthermore, differ-
ent Stiefel coordinates for [[Q]] produce the same objective
function values in Eqs. (17) and (18) (for i = 1, · · · , k).

Proof. The flag manifold FL(n1, n2, . . . , nk;n) is diffeo-
morphic to St(nk, n)/(O(m1) × · · · × O(mk)) where
mi = ni − ni−1. Suppose D = QRP⊤ is a flag de-
composition. Consider QM ∈ St(nk, n) with M =
diag([M1|M2| · · · |Mk]) ∈ O(m1)× · · · ×O(mk), mean-
ing Mi ∈ O(mi) for i = 1, 2, . . . , k.

Notice Q and QM are coordinates for the same flag,
[[Q]] = [[QM]].

The key property for this proof is that right multiplica-
tion by Mi does not change projection matrices QiQ

⊤
i .

Specifically QiQ
⊤
i = QiMi(QiMi)

⊤ for i = 1, 2, . . . , k.
Both Q and MQ satisfy the projection property relative

to D because (for i = 1, 2, . . . , k)

ΠQ⊥
i
= I−QiQ

⊤
i = I−QiMi(MiQi)

⊤ = Π(QiMi)⊥

(19)
which implies that the objective function values in Eqs. (17)
and (18) (for i = 1, 2, . . . , k) are the same for Q and QM.
Additionally, Eq. (19) implies

0 = ΠQ⊥
i
ΠQ⊥

i−1
· · ·ΠQ⊥

1
Bi (20)

= Π(QiMi)⊥Π(Qi−1Mi−1)⊥ · · ·Π(Q1M1)⊥Bi. (21)

Since [[Q]] is hierarchy-preserving and rotations do
not change subspaces, we have [Q1,Q2, . . . ,Qi] =
[Q1M1,Q2M2, . . . ,QiMi]. Thus [[QM]] is hierarchy-
preserving.

Define R(M) with blocks R(M)
i,j = (QiMi)

⊤Bj . Notice

Bj =

j∑
i=1

QiRi,j , (22)

=

j∑
i=1

QiQ
⊤
i Bj , (23)

=

j∑
i=1

(QiMi)(QiMi)
⊤Bj , (24)

=

j∑
i=1

(QiMi)R
(M)
i,j . (25)

Thus D = (QM)R(M)P⊤ is a hierarchy-preserving flag
decomposition.

3. Relationship to MLMD [2]
The Multiscale Low Rank Matrix Decomposition
(MLMD) [2] models D =

∑
i Xi where each block

low-rank matrix Xi models finer-grained features than
Xi+1. Suppose D = [B1|B2] ∈ Rn×p is of rank nk

with columns sorted according to the hierarchy A1 ⊂ A2.
The FD with flag type (n1, n2;n) is D = QR where
Q = [Q1|Q2] ∈ St(nk, n), Q1 ∈ Rn×n1 , and R is
block upper triangular. FD does not seek block low-rank
representations for different scales, rather it extracts a
hierarchy-preserving flag [[Q]] ∈ FL(n1, n2;n). Moreover,
MLMD partitions D into column blocks requiring the
block partition P2 to be an ‘order of magnitude’ larger
than P1 (1st par. Sec. II). FD is more general and free
of this restriction. MLMD models D = X1 + X2 with
Xi =

∑
b∈Pi

Rb(UbΣbV
⊤
b) where Rb is a block reshaper.

The output would be 3 bases (in each Ub), two for the
columns of B1 and B2, and one for all of D. These
are neither mutually orthogonal nor guaranteed to be
hierarchy-preserving. FD outputs one basis in the columns
of Q = [Q1|Q2] are hierarchy-preserving: [Q1] = [B1],
and [Q] = [D].

4. Algorithms
Our get basis algorithm extracts Qi ∈ St(mi, n) from
Ci ∈ Rn×|Bi| so that [Qi] = [Ci] by solving the optimiza-
tion inspired by Eq. (18):

Qi = argmin
X∈St(mi,n)

|Bi|∑
j=1

∥ΠX⊥c
(i)
j ∥

q
2 (26)

for q = 1, 2. We use c
(i)
j to denote the jth column of Ci

and Bi = Ai\Ai−1. A naive implementation of IRLS-SVD
addresses q = 1 and SVD addresses q = 2.

Algorithm 1: get basis

Input: Ci ∈ Rn×|Bi|, mi ∈ R (optional)
Output: Xi ∈ Rmi

if SVD then
UΣVT ← SVD(Ci);
if mi is none then

mi ← rank(Ci);
Qi ← U(1 : end, 1 : mi);

if IRLS-SVD then
while not converged do

for j ← 1 to |Bi| do
c
(i)
j ← Ci(1 : end, j);

wj ←

max
(
∥c(i)j −QiQ

⊤
i c

(i)
j ∥2, 10−8

)−1/2

;

Wi ← diag(w1, w2, . . . , w|Bi|);
UΣVT ← SVD(CiWi);
if mi is none then

mi ← rank(CiWi);
Qi ← U(1 : end, 1 : mi);

Flag-BMGS is essentially BMGS [1] with a different
get basis function. The get basis in Alg. 1 is used at each
iteration of Flag-BMGS to extract a Qi ∈ St(mi, n) so
that [Qi] = [ΠQ⊥

i−1
· · ·ΠQ⊥

1
Bi]. The second nested for

loop in Flag-BMGS defines Ri,j using Eq. (11) and up-
dates Bj so that, at iteration i, we take run get basis on
Ci = ΠQ⊥

i−1
· · ·ΠQ⊥

1
Bi.

Remark 1 (Flag-BMGS operations count). In this remark,
we use O to denote big-O notation and not the orthogonal
group. We also denote bi = |Bi| so Bi ∈ Rn×bi .

The operations count for the SVD of a matrix Bi

is O(nbimin(n, bi)). FD runs k SVDs for each piece
of the column hierarchy. Thus its operations count is
O
(
n
∑k

i=1 bimin(n, bi)
)

.

The IRLS-SVD operations count is O(cinbimin(n, bi))
where ci is the number of iterations until convergence for
IRLS-SVD on Bi. Since IRLS-SVD is run k times in Robust
FD, the operations count is O

(
n
∑k

i=1 cibimin(n, bi)
)

.

We summarize the properties for flag recovery methods
in Tab. 1.

5. Results

We first describe data generation for each simulation. Then
we provide details on the hyperspectral image clustering ex-
periment and confidence intervals for few-shot learning.

Algorithm 2: Flag-BMGS
Input: A data matrix D ∈ Rn×p,
c. hierarchy A1 ⊂ A2 ⊂ · · · ⊂ Ak = {1, 2, . . . , p},
flag type (n1, n2, · · · , nk;n) with nk ≤ p
Output: Hierarchy-preserving flag
[[Q]] ∈ FL(n1, n2, . . . , nk;n),

weights R ∈ Rnk×p, perm. mat. P ∈ Rp×p

with D = QRP⊤

for i← 1 to k do
Bi ← Ai \ Ai−1;
Bi ← D(1 : end,Bi) ∈ Rn×|Bi|;
Pi ←

[
ebi,1 |ebi,2 | · · · |ebi,|Bi|

]
for i← 1 to k do

mi ← ni − ni−1;
Qi ← get basis(Bi,mi);
Ri,i ← Q⊤

i Bi;
for j ← i+ 1 to k do

Ri,j ← Q⊤
i Bj ; %assign Ri,j

Bj ← Bj −QiRi,j ; %project: Bj into
nullspace of Qi

Q←
[
Q1|Q2| · · · |Qk

]
;

R←


R11 R12 · · · R1k

0 R22 · · · R2k

...
...

. . .
...

0 0 · · · Rkk

;

P←
[
P1|P2| · · · |Pk

]
;

Table 1. A summary of flag recovery methods and their properties.

Decomp. QR SVD IRLS-SVD FD RFD

Robust ✗ ✗ ✓ ✗ ✓
Order-pres. ✓ ✗ ✗ ✓ ✓
Flag-type ✗ ✗ ✗ ✓ ✓
Hier.-pres. ✗ ✗ ✗ ✓ ✓

5.1. Reconstruction Simulations

We consider either additive noise to the data or data con-
tamination with outliers. For both experiments, we gen-
erate a Stiefel matrix [X1|X2] = X ∈ St(10, 4) that
represents [[X]] ∈ FL(2, 4; 10). Then we generate the
data matrix D with the feature hierarchy A1 ⊂ A2 =
{1, 2, · · · , 20} ⊂ {1, 2, · · · , 40}. We attempt to recover
[[X]] and D = [B1|B2] ∈ R10×40 using FD and Robust FD
with a flag type of (2, 4; 10), and the first 4 left singular vec-
tors from SVD. We evaluate the estimated [[X̂]] and D̂ using
chordal distance and LRSE.

Additive noise. We consider the following model for D:

di =

{
X1s1i, i ∈ B1 = {1, · · · , 20}
Xs2i, i ∈ B2 = {21, · · · , 40}

where each entry of sji from a normal distribution with
mean 0 and variance 1. We contaminate D with noise by
D̃ = D+ ϵ where ϵ is sampled from either a normal, expo-
nential, or uniform distribution of increasing variance. The
goal is to recover D and X from D̃. FD and Robust FD
improve flag recovery over SVD and produce similar re-
construction errors.
Outliers columns. We randomly sample a subset of
columns of D̃ to be in the set of outliers O. Each outlier
column is in the nullspace of [X] and each entry of oi is
sampled from a normal distribution with mean 0 and vari-
ance 1. We use the same scheme as the additive noise case
to sample sji. Using these quantities, we sample the ith

column of D̃ as

d̃i =


X1s1i, i ∈ B1 \ O
Xs2i, i ∈ B2 \ O
(I−XXT)oi, i ∈ O.

We define D as the matrix containing only inlier columns of
D̃. We attempt to recover D and [[X̂]] from D̃. We measure
the chordal distance between our estimated [[X̂]] and [[X]]

and the LRSE between our inlier estimates D̂ and D.

5.2. Clustering Simulation
We generate three Stiefel matrices to serve as centers of our
clusters

[
X

(c)
1 |X

(c)
2

]
= X(c) ∈ St(4, 10) that represent

[[X(c)]] ∈ FL(2, 4; 10) for c = 1, 2, 3. We use each of these
centers to generate 20 D-matrices with the feature hierar-
chy A1 = {1, 2, · · · , 20}, A2 = {1, 2, · · · , 40} in each
cluster. The ith column in cluster c of the data matrix D

(c)
i

is generated as

d
(c)
i =

{
X

(c)
1 s1i, i ∈ B1

X(c)s2i, i ∈ B2.
(27)

Then we generate the detected data matrices as D̃
(c)
i =

D
(c)
i + ϵ

(c)
i . We sample ϵ

(c)
1i and ϵ

(c)
2i from a normal dis-

tribution with mean 0 and standard deviation .95 and s1i
and s2i from a normal distribution with mean 0 and stan-
dard deviation 1.

5.3. Hyperspectral image clustering
A total of 326 patches were extracted, each with a shape
of (3 × 3), with the following distribution: 51 patches of
class Scrub, 7 of Willow swamp, 12 of Cabbage palm ham-
mock, 10 of Cabbage palm/oak hammock, 11 of Slash pine,

13 of Oak/broad leaf hammock, 7 of Hardwood swamp, 20
of Graminoid marsh, 39 of Spartina marsh, 25 of Cattail
marsh, 29 of Salt marsh, 24 of Mudflats, and 78 of Water.

In this experiment, we measure the distance between two
flags [[X]], [[Y]] as

1√
2
∥X1X

T
1 −Y1Y

T
1 ∥F +

1√
2
∥X2X

T
2 −Y2Y

T
2 ∥F . (28)

5.4. Few-shot learning
We now expand on the methodological details of the base-
line methods for few-shot learning and report further results
including standard deviations.
Prototypical networks. Prototypical networks [4] are a
classical few-shot architecture that uses averages for class
representatives and Euclidean distance for distances be-
tween representatives and queries. Specifically, a prototype
for class c is

q =
1

s

s∑
i=1

fΘ(xc,i) (29)

and the distance between a query point, fΘ(x), is

∥q− fΘ(x)∥22. (30)

In experiments, we refer to this method as ‘Euc.’
Subspace classifiers. Subspace classifiers from adap-
tive subspace networks [3] use subspace representatives
and measure distances between subspace representatives
and queries via projections of the queries onto the sub-
space representatives. Although the original work suggests
mean subtraction before computing subspace representa-
tives and for classification, we notice that there is no mean-
subtraction in the code provided on GitHub. Therefore, we
summarize the model used on GitHub as

X̃c = [fΘ(xc,1)|fΘ(xc,2)| · · · |fΘ(xc,s),] (31)

UcΣcV
⊤
c = X̃c, (32)

Qc = Uc(1 : end, 1 : s− 1). (33)

We say that the span of the columns of Qc serves as the
subspace representative for class c. This can be seen as a
mapping of a set feature space representation of the shots
from one class to Gr(s − 1, n) via the SVD. The distance
between a query fΘ(x) and class c is

∥fΘ(x)−QcQ
⊤
c fΘ(x)∥2F . (34)

This is the residual of the projection of a query point onto
the subspace representative for class c.
Stacking features. Our application of flag classifiers uses
an alexnet backbone fΘ = f

(2)
Θ ◦ f (1)

Θ . Given a sample f ,

flag classifiers leverage both the information extracted by
fΘ and f

(1)
Θ . This is already an advantage over the baseline

methods because flag classifiers see more features. There-
fore, we modify prototypical network and subspace classi-
fiers for a fair baseline to flag nets. Specifically, we replace
fΘ(x) with [

f
(1)
Θ (x)
fΘ(x)

]
. (35)

This doubles the dimension of the extracted feature space
and thereby exposes these algorithms to problems like the
curse of dimensionality. Additionally, it assumes no order
on the features extracted by fΘ and f

(1)
Θ therein not respect-

ing the natural hierarchy of the alexnet feature extractor.
Further results. We provide the classification accura-
cies along with standard deviations over 20 random trials
in Tabs. 2 and 3.

Table 2. Classification accuracy (↑) with s shots, 5 ways, and 100
evaluation tasks each containing 10 query images, averaged over
20 random trials. Flag types for ‘Flag’ are (s − 1, 2(s − 1)) and
the subspace dimension is s − 1. Baselines see stacked features
from both f

(1)
Θ and fΘ.

s Dataset Flag Euc. Subsp.

3
EuroSat 77.7± 1.0 76.7± 1.0 77.6± 1.0
CIFAR-10 59.6± 1.0 58.6± 0.9 59.6± 1.0
Flowers102 90.2± 0.7 88.2± 1.0 90.2± 0.7

5
EuroSat 81.8± 0.7 80.7± 0.8 81.8± 0.7
CIFAR-10 65.2± 0.9 65.2± 0.9 65.2± 0.9
Flowers102 93.2± 0.5 91.4± 0.6 93.2± 0.5

7
EuroSat 83.9± 0.8 82.6± 0.8 83.8± 0.8
CIFAR-10 68.0± 0.7 68.6± 0.8 68.1± 0.7
Flowers102 94.5± 0.5 92.7± 0.5 94.5± 0.5

Table 3. Classification accuracy (↑) with s shots, 5 ways, and 100
evaluation tasks each containing 10 query images, averaged over
20 random trials. Flag types for ‘Flag’ are (s − 1, 2(s − 1)) and
the subspace dimension is s− 1. Baselines see features only from
fΘ.

s Dataset Flag Euc. Subsp.

3
EuroSat 77.7± 1.0 75.9± 0.9 76.8± 1.1
CIFAR-10 59.6± 1.0 58.4± 0.8 58.5± 0.9
Flowers102 90.2± 0.7 87.9± 0.9 88.8± 0.8

5
EuroSat 81.8± 0.7 79.8± 0.8 80.8± 0.8
CIFAR-10 65.2± 0.9 64.5± 1.0 63.8± 0.9
Flowers102 93.2± 0.5 91.1± 0.6 92.0± 0.5

7
EuroSat 83.9± 0.8 81.7± 0.8 82.9± 0.8
CIFAR-10 68.0± 0.7 67.9± 0.8 66.7± 0.7
Flowers102 94.5± 0.5 92.3± 0.5 93.4± 0.5

https://github.com/chrysts/dsn_fewshot/blob/master/Resnet12/models/classification_heads.py

References
[1] William Jalby and Bernard Philippe. Stability analysis and

improvement of the block Gram–Schmidt algorithm. SIAM
journal on scientific and statistical computing, 12(5):1058–
1073, 1991. 4

[2] Frank Ong and Michael Lustig. Beyond low rank+ sparse:
Multiscale low rank matrix decomposition. IEEE journal of
selected topics in signal processing, 10(4), 2016. 4

[3] Christian Simon, Piotr Koniusz, Richard Nock, and Mehrtash
Harandi. Adaptive subspaces for few-shot learning. In Pro-
ceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 4136–4145, 2020. 6

[4] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical
networks for few-shot learning. Advances in neural informa-
tion processing systems, 30, 2017. 6

	SVD and QR for Flag Recovery
	Subspace recovery
	Flag recovery

	Theoretical Justifications
	Relationship to MLMD ong2016beyond
	Algorithms
	Results
	Reconstruction Simulations
	Clustering Simulation
	Hyperspectral image clustering
	Few-shot learning

