
DITASK: Multi-Task Fine-Tuning with Diffeomorphic Transformations

Supplementary Material

Joint Task-Wise Combined
0

1

2

3

∆
m

(%
)

Figure 7. Effect of task-specific and task-agnostic components

A. DITASK Adaptation Process

In this section, we present the pseudocode for our DI-
TASK. We repeat this adaptation process in every train-
ing iteration for every transformer stage in the encoder,
as shown in Figure 4.

DITASK(W,θj , {θk}Kk=1, f,x, {xk}Kk=1)

1. Compute the Singular Value Decomposi-
tion (SVD) of W:

A. W = UΣV!, where: U →
Rc2×c2 ,Σ = diag(σ1, . . . ,σp),V →
Rc1×c1 .

// Joint Adaptation

2. ΣJ = diag(fθj (σ1), · · · , fθj (σp)).

3. Construct WJ = UΣJV
!.

4. h = WJ x

// Task-Specific Adaptation

5. For k = 1, · · · ,K do

A. xk = x if not last block, else xk

B. Σk = diag(fθk(σ1), · · · , fθk(σp)).

C. Construct Wk = UΣkV
!.

D. hk = Wk xk

6. Return h, {hk}Kk=1

B. Gradient Analysis

We analyze the memory requirements for low-rank adap-
tation methods, such as LoRA, and compare them with
DITASK in terms of gradient storage.

LoRA adapts a pre-trained weight matrix W →
Rc2×c1 using two learnable low rank matrices B →
Rc2×r and A → Rr×c1 . During backpropagation, gra-
dients need to be stored for both B,A, and the input
x, resulting in a memory requirement that scales with
rc2(c2+c1)+c1c2. This scaling depends directly on the

rank r, which can make LoRA memory-intensive when
r is large or when the dimensions c1 and c2 are signifi-
cant.

In contrast, DITASK leverages the singular value
decomposition (SVD) of W = UΣV!, where Σ =
diag(σ1, · · · ,σp), p = min(c1, c2). DITASK adapts
W by learning transformations on the singular values
Σ using a small set of parameters θ. This reduces the
gradient storage requirement to NP + p + c1c2, where
NP is the number of intervals over which the CPA ve-
locity field is defined. Unlike LoRA, DITASK avoids
gradients tied to low-rank matrices, significantly reduc-
ing memory usage for tasks with high-rank requirements
or large input dimensions.

By operating directly on the singular values, DI-
TASK achieves a more memory-efficient adaptation
strategy while retaining the ability to make task-specific
updates. This efficiency makes it particularly advanta-
geous for large-scale models.

C. Experimental and Implementation De-
tails

Training. We train using AdamW [29] optimizer with
StepLR scheduler for 300 epochs on 8 NVIDIA A6000
GPUs (batch size 64 per GPU).

Code. Our implementation closely follows the codebase
of MTLoRA [1] (MIT License), which we modified for
our requirements. We refactored the code to allow dis-
tributed training.

Hyperparameters. The hyperparameters specific to DI-
TASK are the tessellation size NP for each joint and
task-wise transformations. In all our experiments, we
perform a hyperparameter grid search using Weights &
Biases framework [4]. All our experiments were per-
formed on a single node with 8 NVIDIA A6000 Ada
GPUs using distributed data-parallel (DDP) training

• PASCAL MTL: We used the tessellation size
of CPAB transformations in {16, 32, 64, 128},
dropout in {0.0, 0.05, 0.5}, learning rate in
{0.005, 0.0005, 0.00005}, warmup epochs
for StepLR in {20, 30, 40}, weight decay in
{0.05, 0.005, 0.0005, 0.00005} and a total train-
ing epochs of 300 with a batch size of 64 per
GPU.

• NYUD: We used the tessellation size of CPAB
transformations in {16, 32, 64, 128}, dropout in
{0.0, 0.05, 0.5}, learning rate in {0.005, 0.0005},
warmup epochs for StepLR in {10, 20, 30}, weight de-
cay in {0.05, 0.005, 0.0005, 0.00005} and a total train-



16 32 64 128

Tessellation Size NP

−5

0
∆
m
(%

)

Figure 8. Effect of tessellation size using DITASK’s perfor-

mance on PASCAL MTL

ing epochs of 100 with a batch size of 64 per GPU.
Evaluation Metrics. We follow the evaluation protocol
of MTLoRA [1]:
• Task-specific metrics: MIOU for segmentation tasks

and RMSE for surface normals and depth estimation.
• Average relative improvement across tasks:

∆m =
1

K

K
∑

k=1

(↑1)lk
(Mk ↑Mst,k)

Mst,k
, (7)

where Mk is the performance on task k, Mst,k is the
single-task baseline. lk = 1 for metrics where lower
is better, and 0 otherwise.

D. Additional Ablations

CPAB Parameterization. The CPAB transformations
are parameterized by the number of subintervals NP

of the domain Ω. From Figure 8, we observe that a
moderate-sized NP = 32 provides strong and stable per-
formance.
Pre-training Scale. Models pre-trained on ImageNet-
21k mostly outperform their ImageNet-1k counterparts
(Table 5), suggesting that models pre-trained on larger
datasets learn novel representations and, by preserving
them, make DITASK more effective.

Table 5. MTL Performance using DITASK on PASCAL for

varying pre-training dataset scale

Task ↓ / Dataset → ImageNet-1k ImageNet-21k

SEMSEG 70.09 69.06
HUMAN PARTS 59.03 62.02
SALIENCY 64.55 65.00
NORMALS 17.47 17.10

VTAB Benchmark. To understand the single-task gen-
eralization capabilities of our method, we compare DI-
TASK and LoRA [19] using the ViT [12] backbone on
the VTAB Benchmark [59]. Shown in Figure 9, DI-
TASK achieves competitive performance with an order
of magnitude fewer learnable parameters, presenting it-
self as a strong fine-tuning method for vision transform-
ers.

10−1 100

Trainable Parameters (M) in ViT

71

72

73

74

75

M
ea
n
A
cc
.
on

V
T
A
B

(%
)

DiTASK

DiTASK

Rank 2

Rank 4

Rank 8

Rank 16

Figure 9. Pareto optimal curve on VTAB benchmark using

DITASK and LoRA. DITASK achieves competitive perfor-

mance using ∼ 10↑ fewer parameters.

Table 6. MTL Performance of selected baselines vs. DITASK

using Pyramid Vision Transformer (PVT) and Swin-Tiny back-

bones with different parameter budgets.

Method ∆m(%)
Trainable Backbone

Parameters (M)

PVT + LoRA (r = 4) -1.35 2.41
Swin-Tiny + LoRA (r = 4) -2.17 0.93
Swin-Tiny + LoRA (r = 8) +4.93 1.31 (×4)

PVT + MTLoRA (r = 64) +1.2 8.69
Swin-Tiny + MTLoRA (r = 16) +1.35 3.01
Swin-Tiny + MTLoRA (r = 32) +2.16 4.14
Swin-Tiny + MTLoRA (r = 64) +2.55 6.40

PVT + DITASK +3.01 1.96
Swin-Tiny + DITASK +3.22 1.61
(Single Task) Swin-Tiny + DITASK +5.33 1.61 (×4)

Additional Experiments. To understand the robust-
ness of our design for different backbones, we evaluate
DITASK using the Pyramid Vision Transformer
(PVT) [51] backbone against various parameter budgets
of MTLoRA and LoRA. From Table 6, we conclude that
our DITASKachieves 2.5× improvement in multi-task
performance over best-performing baseline using 4.4×
fewer trainable backbone parameters.

E. Qualitative Comparison

Figure 10 shows semantic segmentation results on the
PASCAL MTL [13] dataset, comparing MTLoRA and
DITASK against the ground truth. DITASK consis-
tently produces sharper and more accurate segmenta-
tions. In the first row, it captures the structure and bound-
aries of bicycles more precisely, whereas MTLoRA over-
smooths the outputs, failing to recover fine details. Sim-
ilarly, in the third row, DITASK segments smaller ob-
jects, such as zebras, with greater detail, avoiding omis-
sions observed in MTLoRA. For complex indoor scenes,
such as rows five and six, DITASK distinguishes multi-
ple objects effectively and maintains segmentation co-
herence, whereas MTLoRA generates fragmented out-
puts. These results highlight DITASKs ability to adapt
pre-trained weights through diffeomorphic transforma-



Semantic Segmentation

Input Image MTLoRA DITASK Ground Truth

Figure 10. Qualitative comparison of semantic segmentation

on representative samples from the PASCAL MTL dataset

with MTLoRA and our DITASK

tions, enabling accurate segmentation across diverse ob-
ject categories.

Figure 11 demonstrates depth estimation results on
the NYUD MTL [41] dataset, comparing MTLoRA and
DITASK. DITASK captures fine-grained depth varia-

Depth Estimation

Input Image MTLoRA DITASK Ground Truth

Figure 11. Qualitative comparison of depth estimation on rep-

resentative samples from the NYUD MTL dataset with MT-

LoRA and our DITASK

tions and preserves object boundaries more effectively
than MTLoRA. In the second row, DITASK separates
the hallways foreground and background accurately,
closely matching the ground truth, while MTLoRA pro-
duces oversimplified and blurred outputs. In the fourth
row, DITASK preserves depth discontinuities and ob-
ject structures, where MTLoRA fails to capture these
transitions. Even in challenging scenes, such as the last
row, DITASK achieves detailed and consistent depth
predictions, outperforming MTLoRA. These results val-



idate the effectiveness of DITASKs singular value trans-
formations in producing precise, task-specific depth es-
timates.

F. Additional Related Work

Hard Parameter Sharing and Task Dynamics in
Multi-Task Learning. Hard parameter sharing is
a widely used approach in multi-task learning (MTL),
where most layers of a neural network are shared among
tasks, while task-specific layers are restricted to the out-
put heads. This technique, introduced in [7], is compu-
tationally efficient but presents challenges due to task in-
terference, where conflicting task gradients degrade per-
formance. Approaches like PCGrad [57] mitigate this by
enforcing gradient orthogonality, but they do not always
address the full extent of task competition for limited
shared parameters. Despite these challenges, task syner-
gies can be harnessed through careful parameter modu-
lation, allowing shared features to benefit related tasks.
In this context, methods like our DITASK enhance pos-
itive transfer by preserving crucial pre-trained feature
structures, enabling both task-agnostic and task-specific
adaptations through diffeomorphic transformations.
Paradigms in Multi-Task Learning: Model Design
and Optimization Strategies. Research on MTL can
be categorized into two main paradigms: optimization-
driven and model design-based strategies. Optimiza-
tion approaches focus on balancing task-specific loss
functions or modifying task gradients to reduce interfer-
ence, as seen in works like PCGrad [57]. In contrast,
model design-based methods, such as adapters [17] and
LoRA [19], introduce parameter-efficient layers that bal-
ance shared and task-specific features. However, these
methods often restrict updates to low-rank subspaces,
limiting adaptability. MTLoRA [1] extends LoRA by in-
corporating task-specific subspaces, yet still faces trade-
offs between task isolation and synergy. Our DITASK
addresses these limitations by preserving full-rank fea-
tures and enabling dynamic, parameter-efficient adapta-
tions, achieving superior performance on MTL bench-
marks.


	. Introduction
	. Related Work
	. Preliminaries and Background
	. Learned Weights in ViTs
	. CPAB Diffeomorphisms for Weight Transformation

	. DiTASK: Diffeomorphic Multi-Task Adaptation
	. Understanding Weight Matrices
	. Adaptation with DiTASK
	. Properties of DiTASK

	. Experiments
	. Experimental Setup
	. Results and Discussion
	. Ablation Study

	. Conclusion
	. DiTASK Adaptation Process
	. Gradient Analysis
	. Experimental and Implementation Details
	. Additional Ablations
	. Qualitative Comparison
	. Additional Related Work

