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Supplementary Material

1. Supplementary Experiments
1.1. Details of Datasets

In experiments, we use four datasets to validate the perfor-
mance of the proposed method, including YellowR1, Yel-
lowR2, Wuhan, and Yama datasets, and each dataset is com-
posed of two SAR images: one reference image and one
sensed image.

The details of the four datasets are as follows:
• Wuhan dataset: Two SAR images are captured by the

ALOS-PALSAR satellite over Wuhan, China, on 4 June
2006, and 7 March 2009, respectively, as shown in Fig-
ure 1. Each image has a size of 400 × 400 pixels with a
resolution of 10 meters.

• Yama dataset: Two SAR images are acquired in the
Yama region of Australia in 2018 and 2019 by the ALOS-
PALSAR, as shown in Figure 2. Each image has a size of
650× 530 pixels.

• YellowR1/R2 dataset: Two datasets are acquired from
the Yellow River dataset which was captured by the
Radarsat-2 over the Yellow River in China on 18 June
2008 and 19 June 2009, respectively. The YellowR1
dataset has a size of 700× 700 pixels with a resolution of
eight meters, as shown in Figure 3. The YellowR2 dataset
has a size of 1000×1000 pixels with a resolution of eight
meters, as shown in Figure 4.

1.2. Details of Data Construction

Detected Keypoints: In the proposed method, we first use
SIFT [4] to pre-detect keypoints on two images for each
dataset, as shown in Table 1 of the main paper. Here, we
exhibit the visualization of all detected keypoints on two
images of each dataset, shown in Figures 1, 2, 3, and 4,
where the detected keypoints on the reference image and
the sensed image are represented by red dots and blue dots,
respectively.

Multi-scale Datasets: After detecting m and n keypoints
respectively from two SAR images, each keypoint is used
as the centre to capture its image patches and construct
a registration dataset for image registration. To enhance
the dataset, multiple scales are used to obtain more sam-
ples for each keypoint [5]. In experiments, we apply five
scales to crop the image patches for each keypoint, and they
are 64×64, 68×68, 72×72, 76×76, 80×80 pixels. More-
over, each keypoint’s eight nearest neighbours, including
up, down, left, right, top-left, bottom-left, top-right, bottom-
right directions, are also used to capture the image patches
with five scales, and then 45 image patches are obtained
for each keypoint. Finally, based on m + n keypoints, we

Table 1. The number of keypoints pre-detected by SIFT

Dataset YellowR1 YellowR2 Wuhan Yama

R-Image 1339 1379 840 1223
S-Image 1201 1071 1213 1374

Image Patches 114300 110250 92385 116865

Figure 1. The Wuhan dataset with the size 400× 400

Figure 2. The Yama dataset with the size 650× 530

will obtain 45×(m+n) image patches and construct a multi-
scale registration dataset for the proposed model. The num-
ber of all image patches for each dataset is shown in Table
1. Note that all images are resized to 64×64 to feed into the
network.



Figure 3. The YellowR1 dataset with the size 700× 700

In addition, considering that there are inherent and irre-
lievable diversities between two SAR images, such as the
changes in the Earth’s surface, noise, etc, we employ the
conventional preprocessing referred to [6] which utilizes
an initial transformation T0 to transform n keypoints on
the sensed image into the reference image, and then ob-
tain n transformed keypoints. Based on n transformer key-
points, we capture image patches corresponding to n key-
points from the reference images instead of the sensed im-
age, which means the image patches of all m+n keypoints
are from the reference images, to alleviate the effect of in-
herent diversities among reference and sensed images. In
experiments, we use a simple registration method (SIFT [4])
to obtain the initial transformation matrix T0.

1.3. Details of Compared Methods

In experiments, we employ 11 comparative experiments, in-
cluding SIFT [4], SAR-SIFT [1], DNN [11], SuperPoint
[3], Sparse-NCNet [10], MSDF-Net [5], STDT-Net [2],
AdaSSIR [6], DALF [8], XFeat [9], and DBMDF [7], where
the first two are handcrafted feature-based methods and the
last nine are DL-based methods. Especially, DALF and
XFeat are two state-of-the-art methods of image registration
on natural images. The details of all compared methods are
shown as follows:
• SIFT [4]: The Scale-Invariant Feature Transform (SIFT)

algorithm is a feature detection method that identifies and

Figure 4. The YellowR2 dataset with the size 1000× 1000

describes local features in images. SIFT is robust to vari-
ations in scale, rotation, and illumination, and it has been
a baseline for many image registration algorithms.

• SAR-SIFT [1]: this method is an adaptation of the Scale-
Invariant Feature Transform (SIFT) specifically designed
for SAR images.

• DNN [11]: this method employs a Deep Neural Network
(DNN) to seek out matched-point pairs, and it marks a
milestone in the use of DNNs for SAR image registration.

• Sparse-NCNet [10]: this method uses Sparse-NCNet to
obtain matched-point pairs and then applies the RANSAC
algorithm to remove erroneous pairs for computing the
transformation matrix.

• SuperPoint [3]: this method proposes a self-supervised
keypoint detector and descriptor which are suitable for a
large number of multiple-view geometry problems.

• MSDF-Net [5]: this method uses a deep forest to seek out
the matched-point pairs from the view of a binary classifi-
cation problem, where a multi-scale dataset is constructed
for SAR image registration.

• AdaSSIR [6]: this method treats each keypoint as an in-
dependent instance and trains a contrastive network for
registration to extract the latent features for keypoints and
then seek out more correct matched-point pairs.

• STDT-Net [2]: this method regards the SAR image reg-
istration directly as a multi-classification problem, and
then it constructs a dual-transform multi-classification



Table 2. Registration performance on four datasets under different rejection thresholds (λ)

Datasets YellowR1 YellowR2 Yama Wuhan

λ RMSall RMSLOO Nred RMSall RMSLOO Nred RMSall RMSLOO Nred RMSall RMSLOO Nred

0.65 0.9400 0.9502 70 1.0041 1.0141 46 1.0211 1.0352 142 1.0226 1.0543 114
0.75 0.7993 0.8021 47 0.8791 0.8804 28 0.8791 0.8845 109 0.8256 0.8476 69
0.85 0.4282 0.4322 16 0.4160 0.4230 8 0.6597 0.6687 48 0.5739 0.5896 31
0.90 0.3085 0.3120 12 0.2846 0.2957 7 0.4274 0.4401 31 0.3295 0.3334 20
0.95 0.2533 0.2565 11 0.0952 0.1386 6 0.3014 0.3022 25 0.1339 0.1402 16
0.97 0.2533 0.2565 11 0.0952 0.1386 6 0.3014 0.3022 25 0.1339 0.1402 16
0.99 0.2533 0.2565 11 0.0952 0.1386 6 0.3014 0.3022 25 0.1339 0.1402 16

Figure 5. The registration performances (RMSall) under different λ (0.65, 0.75, 0.85, 0.90, 0.95, 0.97, 0.99) for four datasets.

network to seek the matched-point pairs.
• DALF [8]: this method proposes a deformation-aware

network to jointly detect and descript keypoints, which
moderates the difficulty of matching deformable surfaces.

• XFeat [9]: this method designs a lightweight convolu-
tional neural network architecture by adjusting the chan-
nel distribution of the convolutional network, which uti-
lizes a novel match refinement module to achieve semi-
dense matching efficiently the first time.

• DBMDF [7]: this method proposes a deep learning-based
detector and descriptor for keypoint for SAR image regis-
tration, meanwhile constructing a coarse-to-fine registra-

tion method to obtain more robust matched points.

1.4. Evaluation Metrics

In experiments, we apply three evaluation metrics to eval-
uate the performance of SAR image registration, including
Nred, RMSall and RMSLOO, and their details are given as
follows:
• Nred: it represents the number of matched-point pairs

sought by the registration method. Under the condition
of a comparable root mean square error, a higher number
of matched-point pairs indicates better registration ability.

• RMSall: it represents the root mean square error of the



registration results, calculated by

RMSall =

√√√√1

k

k∑
i=1

(pRi − p̂Si )
2, (1)

where p̂Si = T (pSi ), and (pRi , p̂
S
i ) is a pair of matched

points sought by the registration method. T is the trans-
formation of image registration obtained by the registra-
tion method, and k is the number of matched-point pairs,
k = Nred. If the value of RMSall is less than or equal
to 1, it indicates that the registration performance attains
sub-pixel accuracy.

• RMSLOO: it denotes the error obtained based on the
leave-one-out strategy and root mean square error. For
each matched-point pair in Nred, RMSLOO is the average
of all errors of all Nred − 1 matched-point pair.

1.5. Detailed Results on Rejection Thresholds (λ)

In Section 4.4, we presented the variation of the
RMSall metric under different rejection thresholds (λ =
0.65, 0.75, 0.85, 0.90, 0.95, 0.97, 0.99). In this section, we
provide more details of RMSall under different rejection
thresholds λ. The detailed results are shown in Table 2, and
the enlarged plots are also redisplayed here and shown in
Figure 5.

1.6. Analyses on Obtained Matched-Point Pairs

To provide a more qualitative analysis of the point pair
variations during the registration process for each dataset,
we supply more results by systematically evaluating the
changes in the obtained matched-point pairs for four
datasets. All changes are recorded from Epoch 5 to Epoch
50 with 5-epoch intervals (the 5th, 10th, 15th, 20th, 25th,
30th, 35th, 40th, 45th and 50th epochs), as detailed in Table
3. From Table 3, it is obvious that the numbers of the ob-
tained matched-point pairs exhibit a downward trend from
the beginning to convergence for four datasets, and the reg-
istration accuracies are gradually improved with the modifi-
cation of these sought matched-point pairs. Furthermore, to
visually illustrate the changes in the sought matched-point
pairs during the iterative process, we draw the registration
connecting-line charts in these iterations for four datasets,
as shown in Figures 8, 9, 10, and 11. Note that the yellow
dotted line expresses the deleted matched-point pairs and
the purple line expresses the added matched-point pair.

From the four figures, it is seen that the matching lines
are mostly parallel, which indicates the proposed method
can effectively seek out more accurate matched-point pairs.
Especially, compared with these epochs before conver-
gence, the final epoch obtains more accurate pairs. For ex-
ample, for the YellowR2 dataset, after two pairs {(865, 85),
(773, 161)} (A) and {(510, 870), (417, 948)} (B) are re-
moved in the 15th epoch, the obtained registration result is

stabilized in the subsequent iterations, only remaining six
more accurate matched-point pairs. Among six pairs, five
pairs have an x-coordinate difference of 92 and one pair has
a difference of 93, when all have a y-coordinate difference
of 77. The removed pairs have y-coordinate differences of
76 and 78, and the pair (B) has an x-coordinate difference
of 93. Compared with the remained pairs, there are more
diversities among the removed pairs.

For the Yama dataset, it is obvious that 37 matched-point
pairs obtained in the 5th epoch are deleted in the 10th epoch,
as shown in the yellow dotted lines, which also brings the
0.11 improvement (RMSall). Moreover, it is observed that
although the matched-point pair {(545, 275), (557, 277)}
(C) is re-obtained in the 45th epoch but still removed in the
50th epoch. In contrast, the matched-point pair {(341, 386),
(351, 388)} is sought in the 35th epoch and remained until
the end of the 50th epoch. According to the analyses on
the coordinate values of all matched-point pairs, it is known
that the pair D is more consistent with the final matched-
point pairs than the pair C, which means D is higher con-
fidence than C. It indicates that the proposed method can
obtain more accurate and consistent matched-point pairs to
obtain more precise registration results.

For the Wuhan dataset, it is observed that although the
matched-point pair {(176, 223), (195, 203)} (E) is mod-
ified to {(177, 224), (195, 203)} in the 10th epoch, it is
reverted to {(176, 223), (195, 203)} in the 25th epoch but
still removed entirely after the 30th epoch. It illustrates that
this matched-point pair is unstable and with low confidence.
And our method can effectively remove some matched-
point pairs with low confidence by improving in feature
mapping and rejection. For the final sought matched-point
pairs, the deviation in the vertical and horizontal axes be-
tween matched points is consistent, specifically 18 pixels in
the x-coordinate and 20 pixels in the y-coordinate. In short,
the results of the change of matched-point pairs sought by
the proposed method in iterations illustrate that the pro-
posed method obtains more accurate matched-point pairs by
enhancing the feature of keypoint and cross-rejective open-
set recognition for precise registration.

1.7. Registration on the Yellow River dataset

To further demonstrate the effectiveness of the proposed
method, we also conduct registration on the Yellow River
dataset. For the Yellow River dataset, the reference image
and the sensed image are collected by the Radarsat-2 on
18 June 2008 and 19 June 2009, respectively. The resolu-
tion of two SAR images is 7666×7692 pixels, as shown in
Figure 6. Compared with the previous four datasets, this
dataset exhibits pronounced rotational transformations, as
well as extensive regions devoid of detectable keypoints,
and these characteristics bring more challenges for the reg-
istration. Note that YellowR1 and YellowR2 are captured



Table 3. The quantity changes of matched-point pairs obtained by CroR-OSIR in iterations

Epochs 5 10 15 20 25 30 35 40 45 50

YellowR1
Nred 15 12 11 11 10 11 11 11 11 11

RMSall 0.4859 0.3797 0.2533 0.2533 0.2533 0.2533 0.2533 0.2533 0.2533 0.2533

YellowR2
Nred 23 8 6 6 6 6 6 6 6 6

RMSall 0.9543 0.3309 0.0952 0.0952 0.0952 0.0952 0.0952 0.0952 0.0952 0.0952

Yama
Nred 69 32 27 31 26 25 27 25 26 25

RMSall 0.8629 0.5429 0.3875 0.5039 0.3790 0.3260 0.3562 0.3014 0.3354 0.3014

Wuhan
Nred 31 17 19 17 17 16 17 16 16 16

RMSall 0.5768 0.2036 0.3254 0.2036 0.2036 0.1339 0.2036 0.1339 0.1339 0.1339

Figure 6. The Yellow River dataset with the size 7666×7692

from the Yellow River dataset, but the rotational transfor-
mation between their images is eliminated before cropping.
In this experiment, we still pre-detect keypoints from two
images by SIFT, and the detected keypoints are shown in
Figure 6. The same settings in Section 4.1 of our main pa-
per are implemented, and the rejection threshold is set as
λ = 0.95. The experimental results are shown in Table 4.

Here, MSDF-Net[5] is not used in this experiment, since its
code is not published.

From Table 4, it is seen that the proposed method ob-
tains higher registration performance than these compared
methods, meanwhile seeking out more matched-point pairs
(Nred), without any post-processing strategies that assist in
filtering out some incorrectly matched-point pairs. In com-



Figure 7. The visualization of the registration results on the Yellow River dataset

Table 4. The Registration Performance on Yellow River Dataset

Methods RMSall RMSLOO Nred

SIFT [4] 1.3936 1.3996 21
SAR-SIFT [1] 2.9355 2.9422 11

DNN [11] 1.0525 1.2616 19
SuperPoint [3] 1.9874 2.0866 20

Sparse-NCNet [10] 1.0505 1.0618 93
AdaSSIR [6] 0.9945 0.9998 62

STDT-NET [2] 1.1431 1.1523 43
DALF [8] 0.8357 0.8489 63
XFeat [9] 0.9244 0.9297 176

DBMDF [7] 1.3887 1.4655 19
CroR-OSIR 0.8275 0.8276 202

pared methods, only three methods (AdaSSIR, DALF and
XFeat) obtain a performance of less than 1, and the rest
methods are not effective on Yellow River as in the previ-
ous four datasets. The experimental result demonstrates that
our method (CroR-OSIR) is more effective for handling the
affine transformation than these existing methods.

Moreover, the visualization of the registration obtained
by our method is shown in Figure 7. From Figure 7, it
is seen that, compared with other datasets, the matching
lines on this dataset exhibit slight intersections, which may
be caused by the rotation. The proposed method obtains
abundant matched-point pairs. It indicates the proposed
method can adapt well to the image’s rotation angle effects.
The matching points are accurately positioned and evenly
distributed, demonstrating the robustness of our method
against rotation transformations.
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Figure 8. The registration connecting-line charts on YellowR1 dataset during the iterative process, where the yellow dotted line expresses
the deleted matched-points pair and the purple connecting-line expresses the added matched-points pair.



Figure 9. The registration connecting-line charts on YellowR2 dataset during the iterative process, where the yellow dotted line expresses
the deleted matched-points pair and the purple connecting-line expresses the added matched-points pair.



Figure 10. The registration connecting-line charts on Yama dataset during the iterative process, where the yellow dotted line expresses the
deleted matched-points pair and the purple connecting-line expresses the added matched-points pair.



Figure 11. The registration connecting-line charts on Wuhan dataset during the iterative process, where the yellow dotted line expresses
the deleted matched-points pair and the purple connecting-line expresses the added matched-points pair.
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