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1. Overview

The supplementary material for our paper includes this ap-
pendix and a supplementary video. The video provides a
summary of our models along with additional visualized
examples, particularly video demonstrations. Here, we pro-
vide more comprehensive explanations of quantitative ex-
periments, additional qualitative results, and further analy-
sis of our methods.

2. More Qualitative Results

Fig. | presents additional qualitative comparisons with ex-
isting detailed face reconstruction methods. Compared to
previous works [3, 5, 18, 24], particularly those capable of
producing animatable details [3, 5], our model shows im-
provements in detail richness and accuracy. Furthermore,
our transferred person-specific models effectively capture
unique wrinkle patterns specific to individuals while main-
taining robustness to occlusions. Fig.2 presents additional
examples of the animation quality of our base model and
person-specific models compared to state-of-the-art detail
animation models[3, 5]. The details generated by our mod-
els are more feature-aligned and intuitive.

3. More Details about Quantitative Results

We provide additional details on the data processing for the
quantitative experiments, the calculation methods for met-
rics, and the Cumulative Error Distribution (CED) curves
(Fig. 3) for each metric.

300-W Dataset. 300-W [12, 13] is a publicly available
facial landmark dataset that provides a training set consists
of about 2000 usable images annotated with 68 facial land-
marks. We first conducted data cleaning, discarding im-
ages with multiple individuals or with severe omissions of
facial regions, as all models performed poorly on such im-
ages, failing to demonstrate differences in face alignment
performance among the models. On 1424 cleaned images,
we calculate the average RMSE error [13] for the 51 in-
ner landmarks between the predictions of each model and

*corresponding author, xsh@ict.ac.cn

Input FaceScape  FaceVerse DECA EMOCA-v2 Ours-base Base w/ §,,

Fasn
‘ -

r—— = &

@;

R

.

A
.

o

{'“‘%ﬁ'r i

W
-

Figure 1. More Comparison on detail shape reconstruction.
From left to right: Input image, FaceScape [24], FaceVerse [18],
DECA [5], EMOCA-v2 [3], our base model, and our person-
specific models.

the ground truth. Additionally, for DECA [5] and EMOCA
(three versions) [3] that also use the FLAME model, we ex-
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Figure 2. Comparison on face animation. Given a source image,
DECA [5] (row 2, 6), EMOCA-v2 [3] (row 3, 7), and our base
(row 4, 8) and person-specific (row 5, 9) models can respectively
generate detailed 3D faces (green boxes). With a driving image
(yellow boxes), these models can drive the face to exhibit corre-
sponding expressions.

tract the predicted facial silhouette vertices, computing the
average Euclidean distance from the 17 ground truth silhou-
ette landmarks to the nearest silhouette vertices, normalized
by the interoccular distance, which is defined as the distance
between the outer points of the eyes [13]. Given that there
are 17 boundary and 51 inner landmarks in the 68-landmark
annotation, we average the errors with a 1:3 weighting as
the overall error.

300-VW Dataset. A protocol similar to 300-W is used
for evaluation on 300-VW [14], in which we calculate the
average RMSE error [13] for the 51 inner landmarks be-
tween the predictions of each model and the ground truth
and additional boundary error for DECA [5] and EMOCA-
v2 [3]. We average inner error and boundary error with a
1:3 weighting as the overall error.

FaceScape Dataset. After we complete the 68-landmark
annotation (17 facial boundary and 8 inner mouth circle
landmarks) with the results from the HRNet landmark de-
tection [16]. The RMSE error between the predicted land-
marks and the ground truth is then calculated [13]. Since
SynergyNet [22] and 3DDFA-v2 [7] lack selecting meth-
ods for dynamic boundary landmarks, we separately calcu-
late errors for the 51 static inner landmarks and all 68 land-
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Figure 3. Quantitative comparison to state-of-the-art. The plots
show the Cumulative Error Distribution (CED) curves with respect
to the 51 inner facial landmarks and the boundary edge error (for
300-W [13] and 300-VW [14]), or the 51 inner facial landmarks
and all 68 landmarks (for FaceScape [24]).

marks, calculating mean and variance for each identity per
image, and then averaging across identities.

4. Further Explanation of Silhouette Loss

Fig. 4 shows the changes of our silhouette vertices (green)
and the 2D landmarks provided by FLAME (red) as the
model’s pose and expression vary. The FLAME model [10]
provides a method to update the 17 3D boundary landmarks
based on the face’s pose. FLAME uses a vector 7 € N8
to represent the landmark indices. For boundary landmarks,
FLAME pre-defines 78 sets of vertex indices 7' € N78*17,
each corresponding to a certain pose. The model calculates
rotation angles from the pose parameters to find the closest
set of boundary landmarks. However, variations in facial
shape and expression can also affect the vertex indices of
these boundary landmarks. In contrast, we represent model
silhouette edges using dense silhouette vertices, which are
determined by the current vertex normal distribution. This
approach more accurately depicts the 3D outer boundary
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Figure 4. Changes in silhouette vertices (green) and FLAME’s
2D landmarks (red) as pose and expression vary. Row 1: Head
rotation from 60° left to 60° right. Row 2: Head tilt from a frontal
view to a 60° downward tilt. Row 3: Transition from a neutral
expression to an increasingly happy expression.

edges and, due to its dense representation along the edges,
naturally reduces tangential errors inherent in manual sil-
houette landmark annotations. Add itionally, our method is
compatible with arbitrary facial model topologies.

5. More Analysis about Teacher-Student Loss

The high capability of MAE allows it to better capture fa-
cial details compared to CNN-based architectures and pro-
vides a structural foundation for inserting person-specific
adapters during subsequent person-specific transfer. How-
ever, during training, we observed that using only the shape-
from-shading method (as in DECA [5]) to train the MAE re-
sulted in displacement maps with significant artifacts, lead-
ing to numerous unnatural bumps on the detailed 3D face.
This occurs because the shape and the rendered RGB im-
age do not have a one-to-one correspondence. For the
shape-from-shading optimization problem, there are numer-
ous possible solutions, and these artifact-laden results can
be one of them, as the rendered output appears artifact-
free and closely matches the input image (as shown in
Fig. 5). The Teacher-Student Loss leverages an important
prior: smooth regions in the input image usually do not con-
tain wrinkles, whereas areas with significant shading varia-
tions are typically caused by corresponding local facial de-
tails. The UNet structure naturally captures this prior, so we

Figure 5. Detail reconstruction given by our base model, w/o or
w/ our innovative teacher-student loss. From left to right: input
images; reconstructed detailed shape and its rendering produced
by the base model w/o Lrcn,; displacement map from the base
model w/o Lrcpr; reconstructed detailed shape and displacement
map produced by the base model w/ Lrcpr.

train a shallow UNet as the teacher to estimate the displace-
ment map, guiding the MAE optimization towards produc-
ing more natural and intuitive results.

6. Loss Function

In this section, we provide a more detailed explanation of
the loss functions used during training, excluding the sil-
houette vertex re-projection loss and teacher-student loss,
which are already discussed in detail in the main paper.

6.1. Coarse Reconstruction Losses

Inner Landmark Re-Projection Loss. The landmark loss
measures the L1 distance between annotated 2D ground-
truth landmarks at the inner facial region k; € R?,i €
18,---,68 and the projection of the corresponding land-
marks k; € R3,i € 18,--- , 68 on the FLAME mesh. The
landmark loss is defined as:

= Y dteck) = 3 o (k) o]
=18

Special Landmark Pairs Loss. The special landmark
pairs loss is calculated on a set of landmark pairs (e.g., up-
per/lower eyelid or lips landmark pairs) S, by penalizing
the relative positional differences between these landmarks
to more effectively capture features such as the opening and
closing of the eyes and mouth:

b= 3 Jleky-an (-

(i.5)€s
Photometric Loss. The photometric loss constrains the
reconstructed image to closely resemble the input image
and is calculated as:

Lpho = ||RI © (I - IT)||17 3

where R; is a mask of the face skin region, with value 1 in
the region and value O elsewhere, given by an open-source
algorithm.

Perceptual Loss. The perceptual loss combines three
perceptual losses to ensure high-level identity [5] and emo-
tion consistency [3], as well as accurate lip movements [6].

£per = £id + Eemo + 'C'lr (4)

Identity Loss. We introduce DECA’s identity loss to en-
sure that the reconstruction and input images are consistent
at a high-level identity level. The loss measures the cosine
similarity between the rendered images and input images
in the feature embeddings of a pre-trained face recognition
network and is calculated:

(D)
17 (Dl 1 Tl
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Emotion Consistency Loss. We introduce EMOCA’s
emotion consistency loss to ensure the emotional content
of the reconstructed 3D face aligns with that of the input
image [3]. This loss measures the perceptual difference
between the rendered images I, and input images I us-
ing their respective emotion features €; = Emo(l) and
€. = Emo(I,):

‘Cemo = Hel - eI,,VHQ (6)

Perceptual Lip Movements Loss. We introduce SPEC-
TRE’s perceptual lip movements loss to enhance the ac-
curacy of mouth movement details in the reconstructed
face [6]. This loss quantifies the perceptual discrepancy in
speech-aware movements between the rendered images I,
and input images [ through their respective “lipread” fea-
tures m; = LR(I) and m, = LR(I,), assessed via their
cosine similarity:

miyim,

Lp=1-
[myf, - [l

)

Regularization Loss. The regularization losses regular-
ize the shape, expression, and albedo parameters, thereby
preventing the model from overfitting too much noise from
the training data:

Licg =85 + 115 + |3 ®)

Shape Consistency Loss. We introduce DECA’s shape
consistency loss [5], which is based on the observation
that for different images of the same individual, swapping
their shape parameters should yield the same reconstruc-
tion. Therefore, when replacing the shape parameters 3
obtained from the encoding of the current image with the
shape parameters 3’ from another image of the same indi-
vidual, the new parameter set should still yield a good re-
construction:

Lse = Leoarse (Iv /6/7 'be; 07 l) . )

Pretraining Phase. Before optimizing the coarse recon-
struction branch of our base model, we conduct pretraining
exclusively with landmark losses and regularization losses.
This step ensures the initial alignment of the reconstructed
face with the face in the image, as introducing additional
losses before achieving this alignment would be ineffective.
The loss functions employed during the pretraining phase
are as follows:

£pretraining = £inL + ‘CspL + Eregy (10)

6.2. Detail Reconstruction Losses

Photometric Loss. Augmented by the displacement map,
the detail photometric loss is calculated as:

EphoD = £phoD (Ivl;) = HRI © (I - I’Z‘)Hl,l’ Y

where I is rendered following the details differential ren-
dering approach, and R; is a mask of the face skin region.

D-MRF Loss. In accordance with DECA [5], we adopt
an Implicit Diversified Markov Random Field (ID-MRF)
loss [20] in our detail estimation, which extracts feature
patches from different layers of a pre-trained network and
minimizes the difference between corresponding nearest
neighbor feature patches in the input image and detail ren-
dering. This approach encourages the capture of high-
frequency geometric details, making it superior to L1 losses
in detail recovery. the loss is computed on layers conv3_2
and conv4_2 of VGG19 [15]:

Lonry = 2L (convd 2) + Ly (conv3_2) , 12)

where L)y (-) denotes the ID-MRF loss that is applied to
the feature patches extracted from I and I/..

Smoothness Loss. The smoothness loss serves to pre-
vent overly sharp or high-frequency artifacts in the recon-
structed details. During training, we apply regularization to
both DUNet = DUNet (I) and?—l’UV:

Esmo = ||VDUNet||171~ (13)

Soft Symmetry Loss. The soft symmetry loss is em-
ployed to regularize regions on the face outside the facial
skin region R;, to enhance the model’s robustness in oc-
clusion regions and reduce boundary artifacts in obscured
areas.

Leym = ||Rr © (D — flip(D))]|; 5, (14)

where flip is to flip the UV displacement map horizon-
tally.

Detail Consistency Loss. Inspired by DECA [5], in
each mini-batch, images share the same identity. Given
two images I and I’, we can obtain reconstructed coarse
FLAME geometries .S and S’ respectively, which allows us
to calculate the corresponding tension maps Tyy and T+,
When reconstructing facial details using I and 77, the re-
sulting facial details should be consistent with image I’ and
the pseudo ground truth Dy, ., from the teacher network.
Therefore, the detail consistency loss is defined as:

Lac = CanimD(Ilvpbnet(I)vp(Iv TI/JV))- (15)

7. More Implementation Details

Dataset Details. BUPT-Balancedface [19] comprises 1.3
million images of 28,000 celebrities, distributed fairly
across different racial groups, with approximately 7,000
identities per race. Celeb-DF (v2) [11] includes 590
celebrity videos and 300 additional videos collected from



YouTube with subjects of different ages, ethic groups and
genders, and 5639 corresponding DeepFake videos. As we
aim to learn the facial details that change with facial defor-
mation in real human faces, we exclusively utilize the real
videos. MEAD [17] is a video dataset of talking faces, fea-
turing 60 actors and actresses who express 8 distinct emo-
tions at 3 varying intensity levels.

Data Augmentation. For data augmentation, we ran-
domly sample a scaling factor x from a normal distribution
characterized by a mean of 1 and a standard deviation of
0.3, constrained within the range of 1 to 1.2. Furthermore,
we independently sample two bias coefficients 7, and 7,
from a normal distribution with a mean of 0 and a standard
deviation of 0.125, restricted to the interval of -0.1 to 0.1.
Centering the image at an offset of ((1, — 1./x) x 100%
and (1, — ny/K) x 100%) along the x and y directions re-
spectively, with 256« as the side length of a square box, we
extract the region within this square. This extracted portion
is then resized again to 256 x 256, which serves as the final
input to the model.

Network Details. For coarse reconstruction, we use
a Vision Transformer (ViT)[4] with a patch size of 16,
an embedding dimension of 512, 8 attention heads, and a
depth of 8. For detail reconstruction, the teacher model
is a UNet consisting of one encoder block, one decoder
block, and one bottleneck block that connects them. The
encoder block contains two convolutional layers, the bottle-
neck block has one convolutional layer and one transposed
convolutional layer, and the decoder block includes four
convolutional layers. The student model is a masked au-
toencoder (MAE)[8] with a zero masking ratio, ultimately
used for reconstructing animatable details. The encoder of
the MAE has a patch size of 16, an embedding dimension
of 768, 12 attention heads, and a depth of 12, while the
decoder has an embedding dimension of 512, 16 attention
heads, and a depth of 8. During person-specific transfer, the
adapters are MLPs with a single hidden layer. The adapters
placed in the ViT have a hidden layer size that is 1/32 of the
input layer size, while those in the MAE have a hidden layer
size that is 1/2 of the input layer size. This design allows for
better capturing of person-specific detail features.

Loss Balancing Weights. For the coarse reconstruction,
the total loss function with balancing weights is defined as:

L:C = )\silﬁsil + )\inL»CinL + )\spLﬁspL
+ /\phoﬁpho + Eper + /\regﬁreg + ‘Csc;

where )\sil = 05, )\inL = 05, )\spL = ]., )\pho = 2, >\reg =
le — 5. The perceptual loss, L., is given by:

Lper = )\idﬁid + /\emo[’emo + /\l'r‘clra (17)

where A\;q = 0.1, Aepo = 1, and A = 0.05. For the
detail reconstruction, the total loss function with balancing

(16)

Figure 6. Limitation when the face has tattoos. Our transferred
person-specific model (right) mistakenly interprets tattoos as in-
trinsic facial features during reconstruction. Our base model (mid-
dle) is also slightly affected, resulting in a depression in the cheek
area.

weights is:
‘CanimD = EUNet + )\TChTETChT +)\sym£sym +£dca (1 8)

where Archr = 4, Asym = le — 2. Lyne includes the
losses used for training the UNet teacher model:

‘CUNet = )\phoD EphoD + )\mrfﬂmrf

19
+ )\smoﬁsmo + )\regDAcregD7 ( )

where A\pop = 1, Appry = 5 — 3, Agmo = 1e6, and
>\regD = le2.

8. Limitations and Future Work

Facial Tattoos. The pre-trained facial skin region seg-
mentation method [2] we utilize is incapable of exclud-
ing tattoos from the facial region. Consequently, our
model erroneously learns them as part of the facial shape.
Fig. 6 demonstrates that our base model and the transferred
person-specific model mistakenly recognize tattoos as part
of facial wrinkles, which is the inherent limitation of shape-
from-shading. Utilizing more advanced segmentation mod-
els can exclude these interfering elements during training.
Another available solution is to preprocess the images using
facial tattoo removal networks [9] before performing face
reconstruction.

Perspective Projection. Similar to recent learning-
based generic models [1, 3, 5, 21], we employ a weak
perspective camera model (or orthographic camera model).
Nonetheless, in scenarios where the face is captured at a
close distance (such as in smartphone selfies) or with a
wide-angle lens, perspective distortion is not modeled. This
oversight leads to the estimated face conforming directly to
the distorted image, resulting in discrepancies between the
estimated and the actual 3D face. Since the majority of fa-
cial images in large-scale face datasets for self-supervised
training are either taken from a distance or cropped from
larger images, the perspective effects are minimal, posing
a challenge for the automatic regression of camera intrinsic
parameters from these data (cf. [25]).

Future Work. Moving forward, we plan to train our
model on the VFHQ dataset [23], which contains over



16,000 high-fidelity clips of interview scenarios. This will
enable us to capture clearer and higher-resolution wrinkle
details. Additionally, the face geometry estimated by our
model, with its accurately aligned outer boundaries, serves
as an ideal initial position for 3D Gaussian primitives, while
the 3D Gaussian splatting technique provides our model
with higher-fidelity rendering capabilities.
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