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1. Overview
In the supplementary material, we provide additional experiments and detailed information referenced in the paper, including:
• Comprehensive definitions of the loss functions discussed in Section 3.5, as detailed in Sec. 2.
• Further details on data synthesis (in Sec. 3) and additional examples of real-world scenes (in Sec. 4) included in the

proposed datasets, elaborated in Section 4.
• Specific network parameter configurations, as outlined in Section 5.1 (in Sec. 5).
• Results of the user study conducted on the real-world portion of the dataset (in Sec. 6).
• Additional examples showcasing visual comparisons of restoration results (in Sec. 7).

2. Loss Functions
To optimize our proposed method and restore visually pleasing results from old films, following the general setup in the
restoration tasks, we employ the following loss functions.
L1 Loss The mean absolute deviation loss is always used for pixel-wise reconstruction, which is formulated as:

L1 =
1

T

T∑
i=1

∥xi − x̂i∥1, (1)

where T is the length of the input sequence.
Perceptual Loss To improve the perceptual quality of the results, we employ the perceptual loss [5]. Compared to pixel-level
reconstruction, perceptual quality optimization can make the results more aligned with human visual preferences. The loss is
defined as:

LP =
1

T

T∑
i=1

∑
p∈P

ωp∥Φp(xi)− Φp(x̂i)∥, (2)

where Φp is the p-th layer of the pretrained VGG [5], while ωp is the weight of each layer.
Spatial-Temporal Adversarial Loss Generative Adversarial loss [3] is widely used in restoration tasks [6, 9] to enhance the
visual quality of the results. We employ the improved loss function from [2] to optimize our networks and the discriminator.
The discriminator is optimized by hinge loss:

LD = Ex∼X [σ(1−D(x))] + Ex̂∼X [σ(1 +D(x̂))], (3)

where D(·) is the discriminator and σ is the ReLU function. Then, the restoration network is optimized by:

LG = −Ex∼X [D(x)]. (4)

The discriminator and generator are optimized in the same iteration using two optimizers each.
Total loss Therefore, the total loss is that:

Ltotal = λ1L1 + λpLP + λGLG. (5)

The hyper-parameters λ1, λP , λG are empirically set to {1.0, 1.0, 0.01}.
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Figure 1. Visual examples of the degraded video clips. The figure displays three levels of degradation, from top to bottom: mild, moderate,
and extreme.

3. Data Synthesis
To train and evaluate the proposed MambaOFR, we follow existing works [4, 9, 10] to synthesize pairs of clean and degraded
video sequences. The degradation details are as follows:
• Structured defects We use the old film effect templates provided in [9] to simulate structured defects (e.g., scratches, stains,

banding noise, dust) commonly observed in old films. Random data augmentations, including affine transformations such
as flipping and rotation, are applied to each template.

• Noise Gaussian and Speckle noise with a standard deviation σ ∈ [5, 50] are used to introduce noise..
• Blur Isotropic and anisotropic Gaussian blur kernels are applied, with rotation angles θ ∈ [0, π], and principal axis standard

deviations σ1, σ2 ∈ (0, 1).
• Compression Random upsampling and downsampling in the range of 2x ∼ 4x, along with JPEG compression (Compress

level ∈ [40, 100]), are utilized to mimic storage-related compression degradation.
• Fading Random brightness (γ ∈ [0.8, 1.2]) and contrast (β ∈ [0.9, 1.0]) jitter are employed to simulate fading effects.

In addition, to ensure consistency of degradation in the temporal domain, we apply the same set of degradations within
each video clip. As shown in Fig. 1, the degradations in the testing set are categorized into three different intensity levels
based on interval averages. This setup allows us to evaluate the method’s performance under varying degrees of degradation.

4. Real-world Old Films
Compared to synthetic data, old real-world films exhibit more complex degradations that cannot be easily captured by simple
degradation models. Therefore, in our proposed dataset, we have collected a large number of old real-world films. The
diversity of degradation sample types in the dataset is extremely important for research in this field. These video clips not
only encompass a rich variety of scenes but also include diverse degradations. In this section, we provide examples of
different types of degradations to illustrate the richness of our proposed dataset.
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Figure 2. Visual examples of real-world old films with different categories of degradation.

5. Details of Parameter Configure
In this section, we provide a detailed description of the parameter settings for our entire framework. The following is
presented in pseudocode form:
• Parameter Initialization

– num feat = 16
• Flow Estimator

– self.spynet = Get RAFT()
• Bidirectional Propagation Restoration Network (with DMRB)

– self.forward resblocks = Backbone(
embed dim=64, depths=[2, 2, 2], d state=16,
mlp ratio=1.2, in chans=num feat, drop rate=0., weight group size=16)

– self.backward resblocks = Backbone(
embed dim=64, depths=[2, 2, 2], d state=16,
mlp ratio=1.2, in chans=num feat, drop rate=0., weight group size=16)

* --VMB(
dim=embed dim, depth=depths[ith layer], d state=d state,
mlp ratio=self.mlp ratio, drop path=dpr[
sum(depths[:ith layer]):sum(depths[:ith layer + 1])])

* --DPB(weight group size=16, kernel size=3, padding=1)
• Temporal Feature Alignment

– self.Forward Aggregation = FMDA(hidden channels=num feat, kernel size=3, padding=1)
– self.Backward Aggregation = FMDA(hidden channels=num feat, kernel size=3, padding=1)

• Pixel-Shuffle Upsampling
– self.up1 = PSUpsample(num feat*4, num feat, scale factor=1)
– self.up2 = PSUpsample(num feat, num feat, scale factor=1)



• Tail Layers
– self.conv hr = nn.Conv2d(num feat, num feat, kernel size=3, stride=1, padding=1)
– self.conv last = nn.Conv2d(num feat, 3, kernel size=3, stride=1, padding=1)

• Global Residual Learning
– self.img up = nn.Upsample(scale factor=1, mode=’bilinear’, align corners=False)

• Activation Function
– self.lrelu = nn.LeakyReLU(negative slope=0.1, inplace=True)

• Computation of Reconstruction Layers
– cat feat = torch.cat([rlt[i], feat prop], dim=1)
– lq feat = self.lrelu(self.concate(cat feat))
– lq feat = self.lrelu(self.up1(lq feat))
– lq feat = self.lrelu(self.up2(lq feat))
– lq feat = self.lrelu(self.conv hr(lq feat))
– lq feat = self.conv last(lq feat)
– base = self.img up(lq feat)
– lq feat += base
– hq img = torch.tanh(lq feat)

6. User Study

Figure 3. User Study. Voting statistics of different methods versus our method, including DeOldify[1], OldPhoto[9], DeepRemaster[4],
RTN[10], VRT[8], RVRT[7], ShiftNet[6]

In real-world scenarios, where ground truth is unavailable, restoration performance can only be assessed using no-
reference metrics. However, comparisons based on different evaluation metrics often yield inconsistent results. To alleviate
this, we conducted a user study to compare the subjective quality of restoration outcomes.

For this study, we randomly selected 30 old film clips from our proposed dataset and performed pairwise comparisons of
the restoration results produced by our method and the comparison methods. Participants were asked to vote for the result
they considered to be of higher quality. A total of 15 participants were recruited for the study. The average of the 15 sets of
votes was calculated, and the final statistical results are presented in Fig. 3. As shown in Fig. 3, our method demonstrates
significant advantages in subjective quality compared to the comparison methods.



7. Extend Comparison Results
To further validate the effectiveness of our method, we present additional qualitative comparisons. Specifically, we provide
restoration results for a sequence of continuous video frames to assess the temporal stability of our approach. As illustrated
in Fig. 5, our method outperforms the comparison methods in terms of overall visual quality, including improvements in
color accuracy, brightness restoration, and detail retrieval, as well as in addressing specific structural defects. Furthermore,
as depicted in Fig. 4, the restoration results on real-world old films similarly underscore the effectiveness of our method.
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Figure 4. Visual examples of restoration results on the real-world part of the proposed datasets, including DeOldify[1], OldPhoto[9],
DeepRemaster[4], RTN[10], VRT[8], RVRT[7], ShiftNet[6]. Zooming in for better comparison.
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Figure 5. Visual examples of restoration results on the synthetic part of the proposed datasets, including DeOldify[1], OldPhoto[9],
DeepRemaster[4], RTN[10], VRT[8], RVRT[7], ShiftNet[6]. Zooming in for better comparison.
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