
Appendix
A. Proofs 2

A.1. Multi-Step Solving Method . 2

B. Discussion 3
B.1. Discussion on LGP and ACD . 3
B.2. Contributions . 4
B.3. Removing CFG . 4

C. Additional Experimental Settings 4

D. Upsampling Module 4

A. Proofs
The following is based on consistency distillation [30].

A.1. Multi-Step Solving Method
Theorem A.1. Let ∆t := maxn∈J1,N−1K{|tn+1 − tn|}, and f(·, ·;ϕ) be the target phased consistency function induced
by the pre-trained diffusion model (empirical PF-ODE). Assume fθ satisfies the Lipschitz condition: there exists L > 0
such that for all t ∈ [ϵ, T], x, and y, we have ∥fθ(x, t) − fθ(y, t)∥2 ≤ L∥x − y∥2. Assume further that for all n ∈
J1, N − 1K, the ODE solver called at tn+1 has local error uniformly bounded by O((tn+1 − tn)

p+1) with p ≥ 1. Then, if
Dis(fθ(xtn+m , tn+m), fθ(x̂

ϕ
tn , tn)) = 0, we have

sup
n,x

∥fθ(x, tn)− f(x, tn;ϕ)∥2 = O((∆t)p).

Proof. From the loss Dis(fθ(xtn+m , tn+m), fθ(x̂
ϕ
tn , tn)) = 0, we have:

fθ(xtn+m
, tn+m) ≡ fθ(x̂

ϕ
tn , tn). (14)

Let en := fθ(xtn , tn)− f(xtn , tn;ϕ). We obtain the subsequent recursive formula:

en+m = fθ(xtn+m
, tn+m)− f(xtn+m

, tn+m;ϕ)

(i)
= fθ(x̂

ϕ
tn , tn)− f(xtn , tn;ϕ)

= fθ(x̂
ϕ
tn , tn)− fθ(xtn , tn) + fθ(xtn , tn)− f(xtn , tn;ϕ)

= fθ(x̂
ϕ
tn , tn)− fθ(xtn , tn) + en, (15)

where (i) is due to Eq. (14) and f(xtn+m
, tn+m;ϕ) = f(xtn , tn;ϕ). Considering fθ(·, tn) has Lipschitz constant L, we have:

∥en+m∥2 ≤ ∥en∥2 + L∥x̂ϕtn − xtn∥2 (16)
(i)
= ∥en∥2 + L ·O(max

k∈Jn,n+m−1K
(tk+1 − tk)

p+1) (17)

= ∥en∥2 +O(max
k∈Jn,n+m−1K

(tk+1 − tk)
p+1). (18)

Considering the definition of f , we have:

e0 = fθ(xt0 , t0)− f(xt0 , t0;ϕ) (19)
(ii)
= xt0 − xt0 (20)
= 0. (21)

Let j ∗m == N , we have:

∥em∗j∥2 ≤ ∥e0∥2 +
j−1∑
k=0

O(max
l∈Jk∗m,(k+1)∗m−1K

(tl+1 − tl)
p+1) (22)

=

j−1∑
k=0

O(max
l∈Jk∗m,(k+1)∗m−1K

(tl+1 − tl)
p+1) (23)

=

j−1∑
k=0

(max
l∈Jk∗m,(k+1)∗m−1K

(tl+1 − tl))O(max
l∈Jk∗m,(k+1)∗m−1K

(tl+1 − tl)
p) (24)

≤
j−1∑
k=1

(T − ϵ)O(max
l∈Jk∗m,(k+1)∗m−1K

(tl+1 − tl)
p) (25)

≤
j−1∑
k=1

(T − ϵ)O((∆t)p) (26)

= O((∆t)p) (27)

which completes the proof. Eq. 24 and Eq. 25 demonstrate that our method has a smaller error upper bound.

Table 3. MSE Loss of Feature Extracted by DINOv2 During LGP and ACD Stages.

Stage MSE(DINOv2(xImage
in),DINOv2(xPredict)) MSE(DINOv2(fθ(xtn+m , tn+m)),DINOv2(xPredict))

LGP 0.21 0.26
ACD 0.0022 4.09e-5

B. Discussion
B.1. Discussion on LGP and ACD
We demonstrate the convergence of training at different stages based on PCM [32]. Let the data distribution used in the LGP
and ACD phases be denoted as p0, and the forward conditional probability path is defined as αtx0 + σtϵ. The intermediate
distribution is then defined as pt(x) = (p0(

x
αt
) · 1

αt
) ∗ N (0, σt). Similarly, the data distribution used for pretraining the

diffusion model is denoted as ppretrain
0 (x), and the corresponding intermediate distribution during the forward process is

ppretrain
t (x) = (ppretrain

0 (x
αt
) · 1

αt
) ∗ N (0, σt). This is reasonable because current large diffusion models are typically trained

with more resources on larger datasets compared to those used for consistency distillation. We denote T ϕ
t→s, T θ

t→s, and T ϕ′

t→s

as the flow operators corresponding to the pre-trained diffusion model, the flow operators corresponding to our consistency
model, and the PF-ODE of the data distribution used for consistency distillation, respectively.

We first discuss the convergence of LadvACD. We have fθ(xtn+m
, tn+m) ≡ fθ(x̂

ϕ
tn , tn), where xtn+m

∈ pn+m and xtn ∈ pn.
Consequently, we obtain:

T θ
tn+m→ϵ#Ptn+m

≡ T θ
tn→ϵT

ϕ
tn+m→tn#Ptn+m

. (28)

Therefore, if Dis(fθ(xtn+m , tn+m), fθ(x̂
ϕ
tn , tn)) = 0, we have LadvACD = 0.

We discuss the convergence of LadvLGP. We have:

p0 ≡ T ϕ′

tn+m→0#ptn+m . (29)

Therefore, we have

Dis
(
T θ
tn+m→ϵ#ptn+m

∥∥∥p0) (30)

=Dis
(
T θ
tn+m→ϵ#ptn+m

∥∥∥T ϕ′

tn+m→0#ptn+m

)
(31)

Because fθ(xtn+m , tn+m) ≡ fθ(x̂
ϕ
tn , tn), we have:

Dis
(
T θ
tn+m→ϵ#ptn+m

∥∥∥T ϕ′

tn+m→0#ptn+m

)
(32)

=Dis
(
T ϕ
tn+m→ϵ#ptn+m

∥∥∥T ϕ′

tn+m→0#ptn+m

)
(33)

=Dis
(
ppretrain
0

∥∥∥p0) (34)

Because ppretrain
0 ̸= p0, we have LadvLGP > 0.

We consider the input condition xImage
in for the diffusion model, which involves replicating the image condition across

multiple frames to align with the frame count of the original video. The output of our consistency model is fθ(xtn+m
, tn+m).

During the LGP phase, our prediction target is xPredict = x0. During the ACD phase, our prediction target is xPredict =
fθ−(x̂

ϕ
tn , tn).

We extract features from these data using DINOv2 and compute the MSE loss of these features. As shown in Table 3,
during the LGP phase, the difference between xImage

in and xPredict is minimal, indicating that our consistency model tends
to predict multiple static images. During the ACD phase, the difference between fθ(xtn+m

, tn+m) and xPredict is minimal,

indicating that our consistency model tends to predict data generated by the pre-trained model. Although random noise is
added to xImage

in in actual training, this does not fundamentally solve the issue. However, fortunately, using LGP in the early
stage of model training can accelerate the convergence of our distillation model. Figure 1 demonstrates the effectiveness of
using LGP initially.

B.2. Contributions
Here, we re-emphasize the key components of OSV and summarize the contributions of our work.

The primary motivation of this research is to expedite the sampling process for high-resolution image-to-video generation
by leveraging the consistency model training paradigm. Previous methods, including Animate-LCM and SF-V, sought to
harness the potential of consistency models in this demanding scenario but failed to deliver satisfactory outcomes. We
systematically examine and dissect the limitations of these approaches from three distinct perspectives. Crucially, these
methods largely represent direct extensions of techniques originally devised to accelerate text-to-image sampling, and their
straightforward adaptation to image-to-video sampling introduces significant challenges. To address these issues, we broaden
the design space and propose comprehensive solutions to overcome these limitations.

The OSV framework is built upon the decomposition of the training process into two distinct stages, each utilizing a
tailored distillation method to ensure efficient and effective model training. In the second stage, we introduce a multi-step
solving method that capitalizes on the teacher model to execute multiple reverse ODE processes, thereby enhancing predic-
tion accuracy. As illustrated in Figure 5, this multi-step solving method not only accelerates training but also significantly
improves the performance of the consistency model.

Furthermore, inspired by the inherent properties of consistency models, we propose a novel higher-order solver, termed
TTS, to replace the conventional CFG method. Experimental evaluations substantiate the efficacy of TTS, with results
demonstrating state-of-the-art image-to-video generation performance. Remarkably, our approach achieves this using only 8
H800 GPUs (with merely 2 H800 GPUs required in the second stage), underscoring the efficiency and effectiveness of the
proposed method.

B.3. Removing CFG
We introduce CFG into the distilled model: Φ̂(xtn+m , tn+m, c;ϕ) = Φ(xtn+m , tn+m, czero;ϕ)+w∗(Φ(xtn+m , tn+m, c;ϕ)−
Φ(xtn+m , tn+m, czero;ϕ)). This means the model already has CFG during inference, and using the same CFG scale again
during inference leads to exposure issues in the generated videos. Table 2f also shows that a smaller CFG scale does not
significantly improve the video quality. Removing CFG not only speeds up the model generation but also improves the
overall quality of the generated videos.

C. Additional Experimental Settings
λLGP and λACD are set to 0.1. In the Huber Loss, we set c = 0.001.

We train the model with videos of 14 frames, and the test videos also consist of 14 frames.
We use TTS only when the step equals 1.

Table 4. Effect of Upsampling Module.

Upsampling FVD↓
✓ 171.15
× 194.83

D. Upsampling Module
As shown in Figure 9, the upsampling module is displayed. First, we increase the number of channels of the latent space
features, and then upsample the latent space features using the PixelShuffle operation. We set r = 4.

As shown in Table 4, using the upsampling module helps reduce the information loss in videos after they pass through the
VAE Encoder.

Conv2d

PixelShuffle

(b𝒔𝒉𝒂𝒑𝒆 t𝒔𝒉𝒂𝒑𝒆) c𝒔𝒉𝒂𝒑𝒆 h𝒔𝒉𝒂𝒑𝒆 w𝒔𝒉𝒂𝒑𝒆

(b𝒔𝒉𝒂𝒑𝒆 t𝒔𝒉𝒂𝒑𝒆) (෡𝑪𝒔𝒉𝒂𝒑𝒆∗ 𝒓
𝟐) h𝒔𝒉𝒂𝒑𝒆 w𝒔𝒉𝒂𝒑𝒆

(b𝒔𝒉𝒂𝒑𝒆 t𝒔𝒉𝒂𝒑𝒆) ෡𝑪𝒔𝒉𝒂𝒑𝒆(h𝒔𝒉𝒂𝒑𝒆 ∗ r)(w𝒔𝒉𝒂𝒑𝒆 ∗ r)

Figure 9. Upsampling Module. We design the upsampling module inspired by sub-pixel convolution [25].

	Introduction
	Related Works
	Preliminaries
	Method
	Experiments
	Quantitative Experiments
	Qualitative Results
	Ablation Studies

	Conclusion
	Proofs
	Multi-Step Solving Method

	Discussion
	Discussion on LGP and ACD
	Contributions
	Removing CFG

	Additional Experimental Settings
	Upsampling Module

