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Supplementary Material

1. Overview

In Sec. 2, we present comprehensive qualitative results for
the tasks discussed in the main paper. Sec. 3 provides de-
tailed descriptions of our training setup and explains the
metrics used to evaluate our proposed method. In Sec. 4,
we compare the performance of our method against video
restoration methods using a standard video dataset. Further,
Sec. 5 offers an in-depth explanation of our experiments
on downstream applications, further demonstrating the ver-
satility and effectiveness of our approach. Finally, Sec. 6
offers the ablation study for our proposed method, and Sec. 7
provides additional qualitative results.

2. Qualitative Visualization

2.1. Real World Motion Debluring

Figure 1. Qualitative comparison of SIR-Diff with Restormer on
in-the-wild real-world images.

In Fig. 1, we show the performance of our model and base-
lines on deblurring the input on real images captured using a
commodity smartphone. The deblurred output of our multi-
view method is sharper than that of a single-view method
Restormer [20].

2.2. Image Correspondences via LoFTR

In Fig. 2 and Fig. 3, we provide additional examples demon-
strating how our model enhances the ability to LoFTR [14]
model by identifying more corresponding points in low-
resolution and motion-blurry sparse image sets.

2.3. Gaussian Splatting on Motion Blurring Images

Given a set of N degraded input views in Fig 4, we use
SIR-Diff and the baseline method to restore the input image
views. Using the restored image views, we run BAD-GS,
a state-of-the-art Gaussian Splatting reconstruction method
from blurry inputs. We show the output-rendered images
from a novel view. We show that SIR-Diff can restore the
blurry images consistently which leads to better rendering of
the Gaussian Splatting output from a novel view and faster
converge speed during training.

2.4. Sparse View Reconstruction from Degraded
Images

In Fig. 5 and Fig. 6, we show the outputs reconstructing a
sparse view 3D Gaussian Splatting method, InstantSplat [2].
We show that as compared to the baselines which do sin-
gle view restoration for deblurring and super-resolution,
SIR-Diff outshines them with much sharper and crisper
results by enabling better sparse view reconstruction for
InstantSplat [2].

3. Experiment Details
In this section, we provide concrete details of our experiment,
which is composed of metrics explanation in Sec. 3.1 and
training details in Sec. 3.2.

3.1. Metrics
To evaluate the self-consistency of the method, we propose
the Vision Consistency, the metric that evaluates the con-
sistency in RGB space, and the Geometry Consistency that
evaluates the consistency of the 3D geometry.
Visual Consistency. We wish to evaluate the visual consis-
tency between the restored images. The goal of this metric
is to measure if two views that are geometrically consistent
are also visually consistent.

Given two restored images, their ground truth depth maps
and camera poses. We compute corresponding points be-
tween the images by establishing 3D correspondence using
their 3D geometry. Naively measuring the difference in pixel
values between corresponding pixels on the restored images
is insufficient due to lighting and specularities.

To address these issues, we propose a method to eval-
uate the visual consistency of an image set. We compute
ground-truth correspondences between two images, using
the ground-truth geometry (depth) and pose, masking out all
points within occluded regions. Each image is then divided
into patches of size 30× 30. Patches containing fewer than
300 corresponding points are discarded to ensure reliable
evaluation. Given that the ground-truth correspondences
within a patch remain sparse, we leverage these points to
solve for a 2D affine transformation matrix, which is subse-
quently used to warp the patch from the source view to the
target view, then the perceptual loss (LPIPS [21]) is com-
puted between the warped ground-truth image patch and the
target ground-truth image patch. Ground truth patches that
really look like each other have a perceptual loss of less than
0.1. We use these patches for evaluation. This process is
repeated across several patches and average patch-wise per-
ceptual loss is reported as the final measure of consistency



Figure 2. Correspondence matching of LoFTR [14] on low-resolution images. We run a recent correspondence matching algorithm [14]
on the restored images using our and a baseline method (OSEDiff [18]). Note that the algorithm fails to detect matches in blurred images.
While Restormer processed images enable better matching, only about half of the matches are restored compared to the ground truth image
pair. Restored images using our method produce significantly more matches, leveraging our multi-view denoising scheme.

between the two images. The lower the value of the metric
more consistent are the images.
Gemoetry Consistency. We evaluate the geometric consis-
tency between two generated depth maps by evaluating the
consistency of depth estimation for our results in §4.7 (main
paper). We consider corresponding points between two im-
ages by using GT depth. If the depth discrepancy between
two points is ≥ 0.1 meter, we consider that the points are
not in correspondence but one point occludes the other point.
This allows us to create an occlusion mask for the two views
using the ground-truth geometry.

We now use the occlusion mask to evaluate the consis-
tency between the generated depth images using our down-
stream application §4.7. of the main paper. Now for all
the non-occluded points, we warp the generated depth map
from the source view to the target view and evaluate the L1
distance between the warped depth map and the target depth
map. We report the average consistency error in Tab. 6 (main
paper). We compute this metric for pairs of views in our

evaluating image set.

PSNR and SSIM for Deblurring. As mentioned in §4.4 of
the main paper, for the evaluation of the Motion Deblurring
task, we did not rely on traditional metrics such as PSNR and
SSIM to assess the quality of image restoration. Previous
study [21] has shown that traditional metrics often do not
strongly correlate with the perceived visual quality of im-
ages. We observed a similar issue in the Motion Deblurring
task. As illustrated in Fig. 7, these metrics can fail to capture
the visual differences between restored images effectively.
Additional visualizations can be found in Fig. 8. To address
this limitation, we employed neural network-based percep-
tual metrics such as Frechet Inception Distance (FID) [3],
Learned Perceptual Image Patch Similarity (LPIPS) [21] to
evaluate the quality of image restoration in the Motion De-
blurring task, providing a more robust and visually relevant
assessment which can benefit the downstream task.



Figure 3. Correspondence matching of LoFTR [14] on blurry images. We run a recent correspondence matching algorithm [14] on the
restored images using our and a baseline method (Restormer [20]). Note that the algorithm fails to detect matches in blurry images. While
Restormer processed images enable better matching, only about half of the matches are restored compared to the ground truth image pair.
Restored images using our method produce significantly more matches, leveraging our multi-view denoising scheme.

3.2. Training Details

We train our model on 2 synthetic datasets: Hypersim [12]
and TartanAir [17]. We use all the samples from Hypersim,
around 50k high-quality RGB images. For TartanAir, we ran-
domly sample around 10k image sets from the origin dataset.
All the images we use for training are resized into 480 ×
640 resolution. Training our model takes 30k iterations with
a batch size of 8 for each GPU and each instance contains 4
views. We use 2 × NVIDIA A100 40GB or 2 × NVIDIA
L40S GPU for training. We use the Adam optimizer with a
learning rate of 3 · 10−5.

Image Set Selection Strategy. We follow the same image
set selection strategy in both training and testing datasets
illustrated as follows: For each image in the dataset, we
designate it as the anchor view. Next, we iterate through the
remaining images and calculate the overlap region between
the selected image and the anchor image. If the overlap ratio
falls within the range of [0.6, 0.8] for training, the image is

added to the precomputed image list corresponding to the
anchor image. This selection process continues until the list
contains 8 images per anchor. This selection algorithm is
executed prior to training. During training, we randomly
sample 4 images per instance from the precomputed image
list as the image set. For testing, we randomly select 4
frames from 20 frames which near by the reference frames.
This view selection strategy helps the model implicitly learn
geometric relationships across the image sets, leading to
improved performance. For all the images selected in the
images set, we random shuffle the order before training to
enable this permutation invariance at inference.

4. Comparison on Traditional Video Dataset

As mentioned in §4.4 and §4.5 of the main paper, our main
experiment shows the challenges faced by video-based im-
age restoration methods when applied to image sets with
large motion gaps and unordered inputs, as opposed to the



Figure 4. Gaussian Splatting Reconstruction Comparisons. When we use 102 blurry images as inputs for GS, the rendered novel views
exhibit strong artifacts (2nd row). The quality improves when using Restormer [20] (3rd row) to deblur individual blurry images, but the
rendering still includes artifacts compared to the ground truths (1st row). Our multi-view method (4th row) simultaneously deblurs all of the
102 images to produce consistent restorations, leading to higher-quality novel-view predictions.



Figure 5. Sparse-View GS Reconstruction Results Using InstantSplat [2] on Motion Deblurring. We jointly deblur 9 input blurry
images using SIR-Diff (3rd column), leading to sharp reconstruction qualities compared to using Restomer restored images (2nd column).
1st column shows reference reconstruction using GT images.

smoothed and ordered structure of ordinary videos. Methods
such as Upscale-A-Video [23] and VRT [7] exhibit poor
performance under these circumstances.

To ensure a fair comparison with video-based methods,
we conducted experiments on traditional video datasets.
Since the ScanNet++ [19] dataset is also captured in a
video format, it was included in our evaluation. Addi-
tionally, we incorporated two traditional video restoration
datasets: youHQ [23] and REDS [8], which were used to
train Upscale-A-Video [23] and VRT [7], while our method
was evaluated in a zero-shot setting.

For the ScanNet++ dataset, we selected 24 consecutive
frames from each of the 50 scenes in the evaluation set,
resulting in a total of 50 videos for the evaluation. For the
youHQ [23] and REDS [8] datasets, we used their official
evaluation splits and compared our results with the ones
reported in their respective papers. Please refer to Tab. 1 for
results compared to the video-based super-resolution method
and Tab. 2 for results compared to the video-based motion

Table 1. Comparison on Video Super-Resolution Dataset.
We present results on two video datasets: Scannet++ [19] and
youHQ [23]. Note that for the Scannet++ [19] dataset, both meth-
ods operate in a zero-shot setting. In contrast, for the youHQ [23]
dataset, Upscale-A-Video [23] is evaluated in-domain, while our
method remains in a zero-shot setting.

Scannet++ youHQ
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Upscale-A-Video [23] 26.41 0.8343 0.22 25.83 0.733 0.268
SIR-Diff 27.08 0.8456 0.1749 19.55 0.5249 0.4659

deblurring method.

5. Down Stream Applications
5.1. Estimating Correspondences
We use the pre-trained LoFTR [14] model, trained on the
Indoor Dataset, for evaluation. The same samples in Scan-
net++ [19] dataset from the main experiment are utilized.
For each image set, we randomly sample two images to



Figure 6. InstantSplat [2] Reconstruction Results for Super-Resolution. We ran InstantSplat to obtain 3DGS on 9 images that were
restored to be high-resolution, using OSEDiff (2nd column) and SIR-Diff (3rd column). As can be seen from the inset zoom images, our
multi-view super-resolution leads to more 3D-consistent restoration, leading to sharper 3D reconstruction results closer to the ground truth
reconstruction renderings (1st column).

Ground Truth Image Motion Blurry Image Restormer Ours

23.22 / 0.589 / 0.499 23.28 / 0.585 / 0.461 22.36 / 0.531 / 0.262PSNR / SSIM / LPIPS

Figure 7. Ineffectiveness of PSNR and SSIM as Deblurring Metrics. The best result is marked as red for each metric. Ours show sharp
and clear restored results but do not show an advantage on PNSR↑ and SSIM↑ than [20], while LPIPS↓ behaves as expected.

compute correspondences.

First, we run the LoFTR [14] model on ground-truth
high-quality RGB images to determine the number of corre-
spondences that the model can find under ideal conditions.
Then, we apply a single-view image restoration model and
our proposed SIR-Diff to restore the degraded images. The
LoFTR [14] model is subsequently run on the restored im-

ages to compute the number of correspondences, which
serves as an indicator of the quality of the restored images.
The results are presented in Tab.4 of the main paper.



Figure 8. Ineffectiveness of PSNR and SSIM as Deblurring Metrics (Additional Examples). The best result is marked as red for each
metric. Ours show sharp and clear restored results but do not show an advantage on PNSR↑ and SSIM↑, while LPIPS↓ behaves as expected.

Figure 9. Reconstruction Accuracy vs. Iterations. Applying our multi-view deblurring helps the BAD-Gaussians [22] algorithm to
converge faster and improve reconstruction accuracy measured by LPIPS on the two scenes from [9].

Table 2. Comparison on Video Motion-Deblurring Dataset.
We present results on two video datasets: Scannet++ [19] and
REDS [8]. Note that for the Scannet++ [19], both methods oper-
ate in a zero-shot setting. In contrast, for the REDS [8] dataset,
VRT [7] is evaluated in-domain, while our method remains in a
zero-shot setting.

Scannet++ REDS
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

VRT [7] 25.42 0.8470 0.2855 36.79 0.9648 -
SIR-Diff 26.72 0.8351 0.1840 19.60 0.4948 0.3465

5.2. Gaussian Splatting on Reconstruction Motion
Blurring Images

We follow the original experimental settings provided in the
official implementation of BAD-Gaussians [22] (BAD-GS),
which is based on NeRFStudio [15], and conduct experi-
ments using the Deblur-NeRF dataset [9]. The per-scene
result is presented in Tab. 3.

Additionally, we observe that our method accelerates the
convergence of the BAD-GS training process. To illustrate
this, as shown in Fig. 9, we plot the LPIPS [21] loss curve
during the training of BAD-GS on the Factory and Pool
scenes. The results demonstrate that the incorporation of
our model improves the convergence speed, underscoring its



Table 3. Per-scene result of Deblur-NeRF dataset [9]. The best result is highlighted.

Difficulty cozyroom tanabata Pool Factory
Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
BAD-GS [22] 31.16 0.932 0.042 24.03 0.777 0.125 32.36 0.896 0.104 29.61 0.895 0.115
SIR-Diff + 3DGS [6] 25.83 0.825 0.091 21.09 0.654 0.258 28.79 0.800 0.126 23.37 0.707 0.200
SIR-Diff + BAD-GS 30.38 0.931 0.041 21.96 0.698 0.125 31.97 0.891 0.082 28.37 0.834 0.104

Table 4. Additional Gaussian Splatting Reconstruction Result
from Blurry Images. The best is highlighted. We additionally
provide the results of the single-image motion deblurring model
(Restormer [20]) with BAD-GS [22].

Difficulty Medium Hard
Params KS:[30, 10.2], Inten:[0, 0.4] KS:[45,14.85], Inten:[0, 0.5]
Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
3DGS [6] 13.47 0.610 0.607 10.42 0.421 0.801
BAD-GS [22] 10.06 0.537 0.687 8.061 0.385 0.948
Resotrmer [20]+BAD-GS [22] 25.77 0.616 0.356 23.88 0.560 0.317
SIR-Diff + BAD-GS [22] 26.11 0.661 0.250 25.33 0.644 0.277

Table 5. Ablation Study. The best is highlighted.

Genre PSNR ↑ SSIM ↑ LPIPS ↓ Vconsis ↓
W/O 3D Convolution (4 Views) 26.29 0.806 0.137 5.28
W/O SVD Init. (4 Views) 26.28 0.813 0.192 6.03
1 View 25.85 0.792 0.164 5.70
2 Views 26.64 0.840 0.134 5.41
4 Views 27.38 0.837 0.099 5.01
8 Views 28.67 0.842 0.130 5.04

effectiveness in enhancing the training process.
As discussed in Sec.4.6.2 of the main paper, we also evalu-

ate BAD-GS under high-intensity motion blurring conditions.
To simulate motion blurring, we apply varying strengths of
motion blur kernels to sharp images, use our proposed SIR-
Diff to deblur the images, and then perform reconstruction
using COLMAP. The results in Tab.3 of the main paper
reveal that our method achieves robust and consistent perfor-
mance across different intensity levels of motion blurring.
While certain single-view methods also perform well, their
lack of self-consistency in restored images results in infe-
rior reconstruction performance compared to our approach.
Detailed results can be found in Tab. 4.

For all experiments in this section, the reported results
include not only the performance on Novel View Synthe-
sis but also the performance on deblurring the Training
Views. By considering both aspects, we provide a compre-
hensive evaluation of our method’s effectiveness in address-
ing motion-blurring effects across the entire dataset.

5.3. Sparse-View 3D reconstruction from Degraded
Images

We build our method based on the officially released code
of InstantSplat [2]. We randomly select 3 scenes from Scan-
net++ dataset [19] and 3 objects from CO3Dv2 dataset [11].
Following the original setting of InstantSplat [2], we first
randomly sample 24 images as the training-evaluation set,

then randomly sample 9 views from it as the training views
and the rest views for evaluation of Novel View Synthesis.
For the motion deblurring reconstruction task, we apply the
same intensity of the blurring kernel on the ground-truth
sharp images from training views in which the blurring ker-
nel size is chosen from a normal distribution with mean
85px and standard deviation 12.75px, and the intensity of
the blurring is randomly sampled in the range [0, 1]. For
the super-resolution reconstruction task, we downsample
the original high-quality image with a ratio of 4. We use
our SIR-Diff model and the best single-view image restora-
tion mothed to restore the degraded image set and use it for
reconstruction. All the experiment results are reported in
Novel View Synthesis setting. We also report our per-scene
result of super-resolution in Tab 6 and the per-scene result
of Motion Deblurring in Tab 7.

6. Ablation Study

To verify the effectiveness of each modality we propose, we
do several ablation studies: (1) Does the 3D convolution
layer in our spatial-3D ResNet help? (2) Does the SVD [1]
weight initialization on the 3D convolution layer help? (3)
What is the performance variation with different numbers
of views in the 3D self-attention Transformer during the
inference?

We conduct an ablation study on the Scannet++
dataset [19] with a super-resolution task. We used the same
split and image set in the main experiment. As shown in
Tab. 5, without a 3D convolution layer, the performance on
4 views restoration drops greatly on all metrics. This proves
that only deploying the default 2D convolution layer from La-
tent Diffusion Models like SD2.1 [13] is limited in 3D tasks.
However, the performance is still worse even if we have a
3D convolution layer, but don’t initialize the weight with
a reasonable pre-trained model. From here, we also show
that even though the scheduler that SVD uses (EDM [5]) is
different from the DDPM [4] that we use on the training, the
stability of training and the performance improvement can
still be maintained. Furthermore, the results from 1 view to
8 views show that our model can handle different numbers
of views, as the input and overall performance improvement
are proportional to the number of views available.



Table 6. Per-Scene Result for the Super-Resolution Reconsturction on InstantSplat [2]. The best excluding the GT is highlighted.

Scannet++ [19] 825d228aec acd95847c5 d755b3d9d8
SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓

Ground Truth Image 0.976 35.25 0.065 0.953 33.33 0.097 0.892 27.02 0.127

OSEDiff [18] 0.917 26.78 0.217 0.812 26.08 0.243 0.669 20.75 0.364
Ours 0.923 28.41 0.163 0.876 27.39 0.204 0.684 22.82 0.334

CO3D [11] Bench Hydrant Skateboard
SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓

Ground Truth Image 0.758 25.54 0.224 0.697 21.09 0.277 0.818 25.20 0.230

OSEDiff [18] 0.486 20.82 0.393 0.466 17.98 0.417 0.695 21.96 0.329
Ours 0.502 22.70 0.371 0.508 19.49 0.396 0.725 23.15 0.305

Table 7. Per-Scene Result for the Motion Deblurring Reconsturction on InstantSplat [2]. The best despite the GT is highlighted.

Scannet++ [19] 825d228aec acd95847c5 d755b3d9d8
SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓

Ground Truth Image 0.976 35.25 0.065 0.953 33.33 0.097 0.892 27.02 0.127

Restormer [20] 0.869 20.52 0.305 0.830 24.95 0.253 0.669 20.62 0.370
Ours 0.931 29.00 0.165 0.885 27.76 0.206 0.713 22.82 0.323

CO3D [11] Bench Hydrant Skateboard
SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓ SSIM ↑ PSNR ↑ LPIPS ↓

Ground Truth Image 0.758 25.54 0.224 0.697 21.09 0.277 0.818 25.20 0.230

Restormer [20] 0.516 20.62 0.490 0.400 11.00 0.696 0.519 14.54 0.567
Ours 0.545 22.00 0.406 0.498 18.34 0.476 0.669 20.63 0.352

7. Additional Qualitative
Fig. 10 and Fig. 11 show extra qualitative results of our SIR-
Diff on motion deblurring. Fig. 12 and Fig. 13 show extra
qualitative results of our SIR-Diff on super-resolution task.
Our SIR-Diff show richer details in super-resolution and
sharp deblurring restoration quality than other methods on
both object level [11] and scene level [19] testing datasets.



Figure 10. Additional Deblurring Results 1. Our method uses all 4 input views to jointly denoise the images, performing significantly
better than existing single-image-based methods [7, 10, 20].



Figure 11. Additional Deblurring Results 2. Our method uses all 4 input views to jointly denoise the images, performing significantly
better than existing single-image-based methods [7, 10, 20].
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Figure 12. Additional Super-Resolution Comparison Results 1. Our method uses all 4 input views to jointly denoise the images,
performing significantly better than existing single-image-based methods [16, 18, 23]. Zoom in for the best view.
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Figure 13. Additional Super Resolution Comparison Results 2. Our method uses all 4 input views to jointly denoise the images,
performing significantly better than existing single-image-based methods [16, 18, 23]. Zoom in for the best view.


