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7. Context Update in Permutation Language
Decoder

In Sec. 4, we introduced the architecture of the Permutation
Language Decoder (PLD) used in our STR model. Specif-
ically, in our implementation, each block of PLD receives
the output of the previous block as the input of the query
stream, while the key-value stream is provided with the
same context and vision tokens across all blocks. It sim-
plifies the original approach used in PARSeq [3], which up-
dates the context when multiple blocks are presented. While
the positional queries in PARSeq follow the same query
stream as in our implementation, PARSeq additionally pro-
vides the context as input to the query stream in a second
forward pass. This is done in order to update it before using
it as input of the key-value stream of the next block. Fig. 6
shows the diagram of PLD in the PARSeq implementation:
the positional queries follow the same path as in our imple-
mentation (black arrows), the context is updated following
the red arrows.

Figure 6. Diagram of the context update in PLD. The positional
queries are updated following the black arrows (as in our Permuta-
tion Language Decoder). The context is updated following the red
arrows: it is used as input of the query stream in a second forward
pass before using it in the following block.

Figure 7. Average word accuracy (%) on 11 STR benchmarks
for the models with ViT-T, ViT-S and ViT-B vision encoders and
4 different decoder sizes (see Sec. 4.1). Results are compared
with the previous state-of-the-art model, CLIP4STR [54]. Results
using Real training dataset (3.3M images) are depicted with solid
lines and circle markers, while results using RBU training dataset
(6.5M images) are shown with dashed lines and diamond markers.
The x-axis represents the total number GFLOPs on a logarithmic
scale.

Empirically, we found that this additional context update
degrades the performance. Considering the average word
accuracy across 11 benchmarks (AVG11), the performance
of ViT-Base with PLD-Base decreases 0.15%, while ViT-
Small and PLD-Base have a decrease of 0.19%. Moreover,
since the context is also updated, the computational com-
plexity is also increased. To this end, in all our analyses
and experiments, we do not update the context as a default
setting.
Remark. In PARSeq paper, they present the results using a
single-block decoder so the context is actually not updated.
However, their official implementation updates the context
when multiple blocks are used.

8. Computational efficiency
In our STR model, the encoder presents a fixed computa-
tional cost, as it processes the vision tokens in a single for-
ward pass. In contrast, the computational cost of the de-
coder depends on the sequence length due to the use of auto-
regressive (AR) decoding, which has been shown to outper-
form non-autoregressive (NAR) methods [3]. In Sec. 5.3,



Figure 8. GFLOPs for different sequence lengths. The x-axis
represents the sequence length (from 1 to 20 characters), while the
y-axis represents the number of GFLOPs. Results are reported for
ViT-Base and ViT-Small encoders paired with different decoders
(PLD-T, PLD-S, PLD-B and PLD-L).
we demonstrated that increasing the decoder size is effec-
tive to improve performance. In this section, we analyze the
impact of decoder size on overall GFLOPs.
Fig. 7 illustrates how the average model accuracies and the
GLOPs change together. A similar plot is provided in Fig. 1
for the average model accuracy and the total number of pa-
rameters. The GFLOPs are calculated based on the aver-
age sequence length of 5.5, which corresponds to the av-
erage sequence length across all benchmark datasets. The
plot reveals a similar trend that is observed for the num-
ber of parameters. Additionally, Fig. 8 shows how GFLOPs
vary across different sequence lengths (from 3 to 20 char-
acters) for various decoder sizes using ViT-B and ViT-S
as encoders. Notably, for short sequence lengths, the en-
coder has the highest computational cost compared to the
decoder. However, as the sequence length increases, de-
coder’s GFLOPs increase, particularly for larger decoders.
In most STR tasks, efficiency for long sequences is not a
primary target since this kind of sequences is less common
in natural scene settings.
Remark. When referring to the sequence length, we specif-
ically consider the number of characters to be decoded. In
the actual implementation, two additional special tokens are
also decoded: the beginning-of-sequence token (BOS) and
the end-of-sequence token (EOS), which mark the start and
end of decoding process, respectively. The computation of
these tokens is included in the GFLOPs calculation for any
sequence length.

9. Cloze Self-Distillation: hyperparameters
In Sec. 4.2, we introduced Cloze Self-Distillation, our novel
technique to train STR models on real data. The objective

ω= 0.1 ω= 0.5 ω= 1.0

ε= 1.0 92.4 92.4 92.5
ε= 2.0 92.5 92.5 92.5
ε= 3.0 92.5 92.6 92.6

Table 7. CSD hyperpameters. Average word accuracy (%)
AVG11 using CSD-B (ViT-Base + PLD-Base) with Real dataset
for different values of mixing parameter ω and temperature ε .

of CSD is presented in Eq. 10 that we report here for con-
venience:

min
ω

E(x,y)→D
ω→!

t→[1,L]

[→ log pω(yεt |yω<t ,x) + ωKDω,t(x,y)]

In the experiments presented in the main text, we set the
mixing hyperparameter and distillation temperature to ω =
0.1 and ε = 2.0, respectively. In this section, we present
a post-hoc ablation study to show that CSD is not highly
sensitive to these hyperparameters. To provide consistent
results for different values of ω without changing the learn-
ing rate and training dynamics, in this section, we multiply
the loss by 1+ϑ0

1+ϑ , where ω0 = 0.1 is our base value for ω.
Tab. 7 shows that for each combination of ω and ε within the
considered range, the average word accuracy of CSD sur-
passes both the accuracy achieved using solely pseudolabels
(92.3%) and the accuracy obtained through conventional
training methods (92.0%). Moreover, increasing the tem-
perature and mixing parameter appears to further enhance
performance beyond the results presented in the main text.

10. Architecture Analysis
In Sec. 4.3, we presented our Permutation Language De-
coder equipped with Differential Cross-Attention layers.
The aim was to minimize the amount of noise present in
the attention maps. Tables 8, 9 and 10 provide visual
comparisons between the standard Cross-Attention and our
Differential Cross-Attention. From the results, the ma-
jority of the noise and errors observed in the standard
Cross-Attention are effectively reduced when the Differen-
tial Cross-Attention is used.

11. Effectiveness of CSD
All the components of CSD, namely pseudo-labels, knowl-
edge distillation of the context-aware predictions and dif-
ferential decoder, provide substantial improvements as pre-
sented in Tab. 3 and Tab. 4. Specifically, on Real dataset
with the base model, pseudo-labels (PL) provide +0.26%
improvement by themselves. When PL and context-aware
KD are combined, the improvement is +0.50% (providing
robustness to label noise). Finally, the differential decoder



(DD) provides an additional relevant improvement (mitigat-
ing attention noise): PL + KD + DD obtains +0.70%. No-
tably, many benchmarks in STR (used to compute the aver-
age accuracy) are saturated and affected by test label errors.
For this reason, while the improvements might seem mod-
est, they are significant. For comparison, CLIP4STR scales
the architecture from 158M to 446M parameters to obtain
only +0.56% improvement.

12. Additional Results
In Table 11 and 12, we present qualitative examples of pre-
dictions of our STR model by comparing with CLIP4STR
[54]. From the results, even if CLIP4STR has a separate
branch for text correction, our STR model obtains more ac-
curate results, especially for occluded cases. This shows
that training encoder-decoder parts together provides ro-
bustness and improves the accuracy. In Table 13 we show
that CSD outperforms previous state-of-the-art even in the
challenging Union14M benchmark.
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Table 8. Comparison of Attention Maps. Attention maps of the last Cross-Attention in the last block of the Permutation Language
Decoder. On the left: the original input image. First row of each section: attention maps obtained with the standard Cross-Attention.
Second row of each section: attention maps obtained with our Differential Cross-Attention.
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Table 9. Comparison of Attention Maps. Attention maps of the last Cross-Attention in the last block of the Permutation Language
Decoder. On the left: the original input image. First row of each section: attention maps obtained with the standard Cross-Attention.
Second row of each section: attention maps obtained with our Differential Cross-Attention.
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Table 10. Comparison of Attention Maps. Attention maps of the last Cross-Attention in the last block of the Permutation Language
Decoder. On the left: the original input image. First row of each section: attention maps obtained with the standard Cross-Attention.
Second row of each section: attention maps obtained with our Differential Cross-Attention.



Image Ground Truth CLIP4STR-L CSD-D (ours)

260 250 260

3123410900 3113410900 3123410900

arlboro arljoro arlioro

assistence wassistence assistence

bubble bubble bibble

capogiro cap giro capogiro

centre centie centre

Image Ground Truth CLIP4STR-L CSD-D (ours)

cheuvront cheu ront cheuvront

electric electnic electric

cottages cottages cottagee

cotton cutton cutton

haircut hai cut haircut

hotel lotel hotel

kaffee laffee kaffee

Table 11. Qualitative examples. The table presents image examples along with ground truth labels, predictions made by our models,
CSD-D and CLIP4STR-L, which were both trained using the RBU dataset. These predictions are based on a character set consisting of 36
alphanumeric characters. Errors are highlighted in red.



Image Ground Truth CLIP4STR-L CSD-D (ours)

kennedy kenned kennedy

lower power ower

northeast nertheast northeast

menuboard menuboard meruboard

loccasio loccasio loccasio

scientific scientifi scentifi

spaghetti spachetti spaghetti

Image Ground Truth CLIP4STR-L CSD-D (ours)

tabu tqbu tabu

three thpee three

tigger tiggen tigger

towe tower tower

valerie valerte valerie

vigilant vigitant vigitant

immortals immortals jmmortals

Table 12. Qualitative examples. The table presents image examples along with ground truth labels, predictions made by our models,
CSD-D and CLIP4STR-L, which were both trained using the RBU dataset. These predictions are based on a character set consisting of 36
alphanumeric characters. Errors are highlighted in red.



Method Data Params Curve Multi-Oriented Artistic Contextless Salient Multi-Words General Avg
CLIP4STR-B Real 158M 96.3 96.1 86.5 92.2 91.2 88.9 89.9 91.6
CLIP4STR-L Real 446M 97.0 96.6 87.2 91.0 91.5 89.9 90.3 91.9
CSD-D (ours) Real 110M 97.0 97.0 87.7 91.8 91.7 89.5 91.7 92.3
CLIP4STR-B REBU-Syn 158M 96.4 96.3 88.6 90.1 91.9 92.2 89.1 92.1
CLIP4STR-L REBU-Syn 446M 96.4 97.2 88.6 90.4 92.7 90.7 89.3 92.2
CSD-D (ours) RBU 110M 96.5 97.2 88.6 92.8 92.8 90.8 90.2 92.7

Table 13. Comparison of CSD-D with CLIP4STR (results from [31]) on Union14M benchmark.
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