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1. Possible cause for orientation discontinuity
using Gaussian-based loss functions

In the paper, we hypothesize that the angular discontinu-
ity problem with Gaussian-based loss functions recently
noted in [3, 5] is caused by the OBB to Gaussian map-
ping. To illustrate the problem, let us consider an origin-
centered ground-truth (GT) OBB with shape parameters
(w, h, θ) = (3, 1, 89◦) with LE encoding. Figure 1 shows
the plot of the KLD loss LKLD [4] (the same behavior hap-
pens to any Gaussian-based loss) as a function of θ in the
range [−90◦, 90◦). The global minimum is reached for
θ = 89◦, but a local minimum (almost as low as the global
one) is achieved for θ = −90◦. In fact, the corresponding
OBBs are geometrically very similar, as shown on the left
of Figure 1. The loss function is clearly not convex, and the
network might not learn the angular information properly in
this scenario.

θ = 89◦

θ = −90◦

Figure 1. When regressing angular information from a Gaussian-
based loss, the global angular minimum (red, θ = 89◦) might be
close to the discontinuous counterpart (green, θ = −90◦).

2. Proof of Proposition 3.2
Here, we show the proof for the bound on the off-diagonal
element of the Cholesky matrix. First, we revise the nota-
tion and the re-state the proposition.

Let us consider a covariance matrix expressed as a func-

tion of the eigenvalues λw, λh and the orientation θ:

C =

[
λw cos2 θ + λh sin

2 θ 1
2 (λw − λh) sin(2θ)

1
2 (λw − λh) sin(2θ) λw sin2 θ + λh cos

2 θ

]
.

(1)
Also, let us recall the Cholesky decomposition charac-

terized by a lower-triangular matrix L

L =

[
α 0
γ β

]
(2)

with α, β > 0, γ ∈ R, such that C = LLT , i.e.,

C =

[
α2 αγ
αγ β2 + γ2

]
=

[
a c
c b

]
. (3)

Proposition: |γ| ≤
√
λmax −

√
λmin

Proof. From Eqs. (1) and (3), we have that

α2 = a = λw cos2 θ + λh sin
2 θ (4)

Since

λw =
λw + λh

2
+

λw − λh

2
, (5)

λh =
λw + λh

2
+

λh − λw

2
, (6)

we can rewrite Eq. (4) as

α2 =
λw + λh

2
(cos2 θ + sin2 θ) (7)

+
λw − λh

2
(cos2 θ − sin2 θ) (8)

=
λw + λh

2
+

λw − λh

2
cos(2θ) (9)

From Eqs. (1) and (3), we have that

γ2 =
c2

α2
=

1

2

(λw − λh)
2 sin2(2θ)

(λw + λh) + (λw − λh) cos(2θ)
. (10)
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Figure 2. IoU between OBB and OE representations with the corresponding segmentation masks in DOTA.

Defining x = cos(2θ), we have that x ∈ [−1, 1]. We can
express γ2 as a function of x, given by

γ2 = f(x) =
1

2

(λw − λh)
2(1− x2)

(λw + λh) + (λw − λh)x
, (11)

so that

f ′(x) =
(λh − λw)

2 (
λhx

2 − 2λhx+ λh − λwx
2 − 2λwx− λw

)
2 (λhx− λh − λwx− λw)

2 .

The only solution of f ′(x) = 0 in the interval [−1, 1] is
given by

x∗ =
λh + λw − 2

√
λh

√
λw

λh − λw
. (12)

Since f(−1) = f(1) = 0 and γ2 is non-negative, the
global maximum occurs at x = x∗. The maximum value of
γ2 is given by

f(x∗) = λh+λw−2
√
λh

√
λw = (

√
λw−

√
λh)

2. (13)

Finally, we have that

max |γ| =
√

max γ2 =
√
λmax −

√
λmin, (14)

3. Comparison Between OBBs and OEs in
DOTA

To show that Oriented Ellipses (OEs) can be used as an
alternative to Oriented Bounding Boxes (OEs) for repre-
senting typical objects in oriented object detection, we per-
formed a study based on the DOTA 1.0 dataset [2], which
provides OBB annotations. From each OBB, we generated
an OE representation with the same orientation of the OBB

and semi-axis composed of half of the OBB dimensions, as
explained in the paper. For each annotation, represented as
both OBB and OE, we computed the IoU with the segmen-
tation masks provided in [1].

Figure 2 shows the IoU values for OE and OBBs con-
sidering all 15 categories of the DOTA dataset. The median
IoU value computed with OEs is higher than the IoU us-
ing OBBs in nine of the sixteen categories: PL, BD, GTF,
SV, SH, ST, RA, SP, and HC. In particular, we highlight
the relatively low IoU values for RA (roundabout) us-
ing OEs. The main cause is the discrepancy between the
OBB and segmentation mask annotations, as illustrated in
Figure 3. In Figures 3a and 3b, the mask comprises only
the roundabout, but the OBB also includes the surround-
ing street. In Figure 3c, both OBB and mask comprise the
roundabout and street, while in Figure 3d, they comprise
only the roundabout.

(a) (b) (c) (d)

Figure 3. Examples of inconsistencies between OBB and segmen-
tation masks for roundabouts in DOTA and iSAID.



4. Flowchart and Visual Results
Figure 4 provides an overview of our method and how we
incprporate Cholesky parameters to free-anchor and anchor-
based detectors. For free anchor detectors, the Cholesky
parameters were regressed directly from the networks and
can be mapping to Gaussian parameters to calculate a loss
functions as well decoded to box or ellipse. In anchor based
detectors, we establish a relationship between HBB anchors
and the Cholesky parameters to perform the training and
test.

Figure 4. Example of GauCho for oriented object detection for
free anchors and anchor-based detectors. For anchor-based ap-
proach, a relationship between HBB anchors and Cholesky was
proposed. While free anchors detectors use the Cholesky decom-
position directly.

Also, we show some results of oriented object detection
using GauCho. We selected some representative images of
the tested datasets (DOTA, HRSC and UCAS-AOD) and
showed the results as both OBBs and OEs.

Figure 5 shows a visual comparison of FCOS-GauCho
and FCOS-Baseline over rotated images of the HRSC
dataset aiming to evaluate the rotation equivariance (RE) as-
sumption. Although the results of both detectors are mostly
coherent, using the GauCho head yields better orientation
consistency (see the maximum orientation error for each de-
tector).

Figure 6 shows detection results using FCOS-GauCho
with ProbIoU loss for UCAS-AOD using both OBB and
OE representations. This particular image shows the known
decoding ambiguity problem for square-like objects when
Gaussian-based loss functions are used: the orientation of
the planes cannot be retrieved using OBB representations,
leading to larger discrepancies between predictions and GT
annotations (Figure 6a). On the other hand, the proposed
OEs are fully compatible with GauCho and Gaussian-based
loss functions, since the orientation has a small impact on
ellipses with small aspect ratios, as shown in Figure 6b.
Figure 7 shows a similar result for the DOTA dataset: Fig-
ures 7a-d illustrate detection results as OBBs, while Fig-
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Figure 5. Visual comparison of FCOS-Baseline (a, c) and FCOS-
GauCho (b, d) under rotated images of the HRSC dataset. Blue
boxes represent detections that matched a ground truth box with
IoU ≥ 0.5 and green boxes represent the matched ground truth
boxes. Highest AOE refers to the highest achieved absolute orien-
tation error of a detection in relation to its matched ground truth.

ures 7e-h depict the same detections as OEs. Unfortunately,
we do not have access to GT annotations of the test set in
DOTA. However, we note that FCOS-GauCho produces co-
herent results.

5. Performance Comparison

In this section, we analyze and provide insight into the
training and testing time associated with Gaucho compared
to traditional models. In the training stage, model size is
the same for an OBB head and GauCho since both need
to regress three shape-related parameters plus the centroid.
Regarding the computational cost, training GauCho with a
Gaussian loss is slightly lighter than an OBB head since Eq.
(5) is simpler than Eqs. (1)-(2) from main paper. For infer-
ence, GauCho is slightly heavier since we must compute the
eigendecomposition of a 2× 2 matrix.

However, these differences are small compared to the
cost of the backbone. Table 1 presents a test time compari-
son for all our trained methods in HRSC2016 dataset on two
different machines: Machine 1 uses a NVIDIA GeForce
RTX 3090 GPU, while Machine 2 uses a NVIDIA Titan
Xp GPU.
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Figure 6. Detection outputs (blue) for FCOS-GauCho on the
UCAS-AOD dataset and GT annotations (green), using (a) OBB
and (b) OE representations.

Table 1. Comparison of different detectors using the original OBB
head and the proposed GauCho with single-scale training/testing.
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Figure 7. Qualitative comparison of FCOS-Gaucho using OBBs (top) and OEs (bottom) from some images from the DOTA dataset. Better
seen zoomed.


