
Visual Agentic AI for Spatial Reasoning with a Dynamic API

Supplementary Material

Method CLEVR OMNI3D-BENCH

V
LM

s

GPT4o [1] 1.4 0.6
Claude3.5-Sonnet [2] 0.2 0.6
Llama3.2 [9] 0.5 1.6
Gemini1.5-Pro [36] 0.3 1.8
Gemini1.5-Flash [36] 0.3 1.1
Molmo [8] 0.0 0.0
SpaceMantis [6, 17] 0.0 0.0

Pr
og

ra
m

Sy
nt

he
si

s ViperGPT [35] 1.1 0.3
VisProg [12] 0.9 0.3
VADAR (ours) 2.9 1.8

Table 5. Standard deviation across experimental runs.
VADAR’s variation is comparable to VLMs on Omni3D, but
slightly higher than program synthesis methods on CLEVR, de-
spite achieving significantly higher accuracy.

Signature (for 10 Qs) Implementation Program (per Q) Execution (per Q)
20.5±3.6 37.2±14.4 6.5±1.8 35.7±11.8

Table 6. Runtime for each Agent in seconds.

The Appendix includes the prompts used for all agents,
additional qualitative examples of VADAR on CLEVR,
OMNI3D-BENCH, and GQA, and a supplemental qualita-
tive analysis with standard deviations to compare the ro-
bustness of approaches.

A. Prompts

Predefined Module Signatures. Fig. 9 and Fig. 10
show the docstrings of the predefined modules for
CLEVR and OMNI3D-BENCH respectively, which are
used to initialize the dynamic API. We note that the two
prompts are virtually identical, with the exception of the
get 2D object size method, which we omit from our
experiments on CLEVR as the dataset defines size as ei-
ther small or large. In Fig. 11, we provide the Python
implementation for all of the predefined modules.
Signature Agent Prompt. Fig. 12 contains the prompt used
for the Signature Agent for both CLEVR and OMNI3D-
BENCH. We prompt the LLM to only generate signatures
for methods when necessary, as we found this avoids re-
dundant methods with minor changes to previously defined
methods. We impose that the name of new methods start
with an underscore, to prevent the common failure case of
methods sharing names with variables previously defined.
Implementation Agent Prompt. Fig. 13 and Fig. 14 con-
tain the prompts used for the Implementation agent on
CLEVR and OMNI3D-BENCH respectively. The prompts
contain Weak ICL examples, illustrating how to implement a

model signature and use the pre-defined modules correctly
for simpler queries. This is in contrast to Strong ICL ex-
amples in VisProg and ViperGPT, which provide complete
program examples for full queries using a predefined API.
In our framework, where agents dynamically generate the
API, Strong ICL is not feasible.

Additionally, the prompts feature Pseudo ICL in the form
of natural language instructions and tips. Similarly to the
predefined modules, the prompts differ between CLEVR
and OMNI3D-BENCH as the latter considers metric sizes
and not a binary small or large as in CLEVR. Conse-
quently, we found it necessary to include natural language
definitions and instructions for reasoning about 2D and 3D
dimensions in the Implementation prompt on OMNI3D-
BENCH.
Program Agent Prompt. In Fig. 15 and Fig. 16 we
show the prompts for the Program Agent on CLEVR and
OMNI3D-BENCH respectively. In the prompt for CLEVR,
we include a list of all available attributes. In both prompts,
we include Pseudo ICL in the form of natural language ex-
amples and instructions. For the OMNI3D-BENCH prompt,
we additionally include tips and definitions for handling 2D
and 3D dimensions.

B. Additional Quantitative Analysis

Experimental Variability. Tab. 1 in the main paper re-
ports the mean performance of all methods across 3 runs.
Tab. 5 reports the standard deviation on CLEVR and
OMNI3D-BENCH across the same 3 runs. VADAR’s varia-
tion is comparable to the VLMs on OMNI3D-BENCH, but
slightly higher than program synthesis methods on both
benchmarks. However, VADAR significantly outperforms
ViperGPT and VisProg, even when accounting for this vari-
ation.
Runtime. Tab. 6 reports runtime in seconds for our Agents
on an A100 GPU. Notably, when running our method on
1000+ questions, the Signature and Implementation Agents
only run once, therefore their runtime becomes negligible
to total inference runtime.

C. More information on OMNI3D-BENCH

On images sourced from Omni3D [5] we collect a set of
challenging questions with the help of human annotators.
We omit using templates for questions, as done by oth-
ers [6, 38, 44], to avoid template overfitting, and instead
instruct annotators to directly ask questions in free-form
natural language, focusing on the scene, object layout and

VSI-Bench-img
Gemini1.5-Pro 49.5

VADAR 50.1
Table 7. Results on VSI-Bench [44]. VADAR outperforms
Gemini1.5-Pro on a image-based subset of 75 queries from VSI-
Bench that sources the frame that contains all the information nec-
essary to respond correctly. Notably, VADAR achieves a 50.1%
accuracy on this subset, compared to 40.4% on OMNI3D-BENCH,
highlighting the challenging nature of our proposed benchmark.

object sizes. We discard questions that are simplistic, e.g.
“Is there a sofa in the image?” or “Is the sofa behind the ta-
ble?”, and only keep queries which involve complex infer-
ence steps in 2D and 3D. OMNI3D-BENCH queries roughly
target the following areas of reasoning: relative size and di-
mensions with hypotheticals, spatial relationships and depth
reasoning, relative proportions and alignments, and interac-
tion with other objects. Queries from OMNI3D-BENCH can
be browsed in https://glab-caltech.github.io/vadar/omni3d-
bench.html.

We compute answers for questions using the 3D annota-
tions provided in Omni3D [5]. Since the questions are not
templated and thus don’t follow rule-based instructions, we
collect answers manually by sourcing the 3D annotations
provided by the dataset for each image. This results in 500
unique and challenging image-question-answer tuples that
test diverse aspects of 3D spatial reasoning. The diversity
and complexity of OMNI3D-BENCH is showcased by the
examples in Fig. 1, Fig. 4 and Fig. 7.

OMNI3D-BENCH complements CLEVR when assess-
ing 3D spatial understanding. While CLEVR uses tem-
plated questions, enabling the creation of a large volume
of image-question-answer pairs, OMNI3D-BENCH focuses
on diverse and complex reasoning tasks in free-form lan-
guage. Together, CLEVR and OMNI3D-BENCH provide a
comprehensive test for models’ 3D spatial reasoning capa-
bilities. This is evidenced by the relatively low performance
of modern state-of-the-art AI models on these benchmarks,
achieving only 20-40% accuracy.

D. Comparison to VSI-Bench
Concurrent to our work is VSI-Bench [44], a video under-
standing benchmark that focuses on spatial reasoning. VSI-
Bench targets 3D reasoning, but it differs from OMNI3D-
BENCH in three critical ways: First, it focuses on video un-
derstanding and retrieving the appropriate frame to answer a
given query. Second, while queries in VSI-Bench target 3D
object attributes, they query absolute measurements, such as
“What is the height of the chair?”. Monolithic VLMs when
prompted with such questions resort to object priors. For
example, GPT4o says: “A chair tends to be 30-40 inches
tall”. In contrast, OMNI3D-BENCH introduces hypotheti-
cals that require reasoning over scene attributes, evaluating

true 3D spatial reasoning, e.g., “If the table is 2 meters wide,
how tall is the chair?”. Third, VSI-Bench queries are tem-
plated, which can lead to biased conclusions due to template
overfitting.

We compare VADAR on VSI-Bench. To decouple frame
retrieval from image-based reasoning, we create a variant
of the benchmark by sourcing a subset of 75 queries with
the associated frame that contains the information neces-
sary to address the query. We call this subset VSI-Bench-
img. Tab. 7 reports VADAR’s performance and compares to
Gemini1.5-Pro, which authors report to be the best VLM on
the set. From Tab. 7 we observe that VADAR performs on
par with the industry-leading Gemini1.5-pro. Importantly,
VADAR’s performance on VSI-Bench-img is 10% higher
than on OMNI3D-BENCH (40.4 vs 50.1) which highlights
the more challenging nature of our benchmark.

E. Qualitative Examples on CLEVR
Fig. 6 shows additional qualitative examples on CLEVR.
The correct example showcases the use of API methods for
repeated tasks and accurately determining spatial relations.
The incorrect example highlights a failure to use same ob-
ject to exclude the original reference object when the ques-
tions asks for “another” object.

F. Qualitative Examples on OMNI3D-BENCH

Fig. 7 shows additional qualitative examples on OMNI3D-
BENCH. Our method is able to correctly estimate 3D dis-
tances by scaling depth based on the reference scale given
in the question. An instance where such scaling is done in-
correctly is shown in the last example.

G. Qualitative Examples on GQA
Fig. 8 shows qualitative examples on GQA [16]. Our
method is able to identify and locate key objects necessary
to answer questions. It is extremely explicit, locating the
nearest person in the top right example using pixel distance
from the tree. Some GQA questions have ambiguous an-
swers, where the shape of the pot is generically “round”
and the frame of reference for spatial relations is not en-
tirely clear (i.e., which man in the last example?).

https://glab-caltech.github.io/vadar/omni3d-bench.html
https://glab-caltech.github.io/vadar/omni3d-bench.html

Figure 6. VADAR program outputs on CLEVR.

Figure 7. VADAR program outputs on OMNI3D-BENCH.

Figure 8. VADAR program outputs on GQA [16].

\"\"\"
Locates objects in an image. Object prompts should be 1 WORD MAX.

Args:
image (image): Image to search.
object_prompt (string): Description of object to locate. Examples: "spheres", "objects".

Returns:
list: A list of x,y coordinates for all of the objects located in pixel space.

\"\"\"
def loc(image, object_prompt):

\"\"\"
Answers a question about the attributes of an object specified by an x,y coordinate.
Should not be used for other kinds of questions.

Args:
image (image): Image of the scene.
question (string): Question about the objects attribute to answer. Examples: "What color is this?", "What material is this?"
x (int): X coordinate of the object in pixel space.
y (int): Y coordinate of the object in pixel space.

Returns:
string: Answer to the question about the object in the image.

\"\"\"
def vqa(image, question, x, y):

\"\"\"
Returns the depth of an object specified by an x,y coordinate.

Args:
image (image): Image of the scene.
x (int): X coordinate of the object in pixel space.
y (int): Y coordinate of the object in pixel space.

Returns:
float: The depth of the object specified by the coordinates.

\"\"\"
def depth(image, x, y):

\"\"\"
Checks if two pairs of coordinates correspond to the same object.

Args:
image (image): Image of the scene.
x_1 (int): X coordinate of object 1 in pixel space.
y_1 (int): Y coordinate of object 1 in pixel space.
x_2 (int): X coordinate of object 2 in pixel space.
y_2 (int): Y coordinate of object 2 in pixel space.

Returns:
bool: True if object 1 is the same object as object 2, False otherwise.

\"\"\"
def same_object(image, x_1, y_1, x_2, y_2):

Figure 9. Pre-defined Modules for CLEVR. These modules are used to initialize the dynamic API. As CLEVR defines size to be either
large or small, we omit the get 2D object size method.

\"\"\"
Locates objects in an image. Object prompts should be 1 WORD MAX.

Args:
image (image): Image to search.
object_prompt (string): Description of object to locate.

Returns:
list: A list of x,y coordinates for all of the objects located in pixel space.

\"\"\"
def loc(image, object_prompt):

\"\"\"
Answers a question about the attributes of an object specified by an x,y coordinate.
Should not be used for other kinds of questions.

Args:
image (image): Image of the scene.
question (string): Question about the objects attribute to answer. Examples: "What color is this?", "What material is this?"
x (int): X coordinate of the object in pixel space.
y (int): Y coordinate of the object in pixel space.

Returns:
string: Answer to the question about the object in the image.

\"\"\"
def vqa(image, question, x, y):

\"\"\"
Returns the depth of an object specified by an x,y coordinate.

Args:
image (image): Image of the scene.
x (int): X coordinate of the object in pixel space.
y (int): Y coordinate of the object in pixel space.

Returns:
float: The depth of the object specified by the coordinates.

\"\"\"
def depth(image, x, y):

\"\"\"
Checks if two pairs of coordinates correspond to the same object.

Args:
image (image): Image of the scene.
x_1 (int): X coordinate of object 1 in pixel space.
y_1 (int): Y coordinate of object 1 in pixel space.
x_2 (int): X coordinate of object 2 in pixel space.
y_2 (int): Y coordinate of object 2 in pixel space.

Returns:
bool: True if object 1 is the same object as object 2, False otherwise.

\"\"\"
def same_object(image, x_1, y_1, x_2, y_2):

\"\"\"
Returns the width and height of the object in 2D pixel space.

Args:
image (image): Image of the scene.
x (int): X coordinate of the object in pixel space.
y (int): Y coordinate of the object in pixel space.

Returns:
tuple: (width, height) of the object in 2D pixel space.

\"\"\"
def get_2D_object_size(image, x, y):

Figure 10. Pre-defined Modules for OMNI3D-BENCH. These modules are used to initialize the dynamic API.

def loc(self, image, object_prompt):
pts = molmo(image, "point to the " + object_prompt)
if len(pts) == 0:

No points found
return []

return pts

def vqa(image, question, x, y):
mask = sam_2([x, y], "foreground") # get sam2 mask at x,y
bbox = bbox_from_mask(mask) # bbox around sam2 mask
boxed_image = overlay_box_on_image(image, bbox) # original image with bbox overlaid
result = gpt4o(boxed_image, question)
return result

def depth(image, x, y):
depth_pred = unidepth(image)["depth"] # Predict depth map over image
depth_x_y = depth_pred[y, x]
return depth_x_y

def same_object(image, x_1, y_1, x_2, y_2):
mask_1 = sam_2([x_1, y_1], "foreground") # get sam2 mask for point 1
mask_2 = sam_2([x_2, y_2], "foreground") # get sam2 mask for point 2
obj_1_bbox = bbox_from_mask(mask_1) # bbox around sam2 mask
obj_2_bbox = bbox_from_mask(mask_2) # bbox around sam2 mask
return iou(obj_1_bbox, obj_2_bbox) > 0.92

def get_2D_object_size(image, x, y):
mask = sam_2([x, y], "foreground") # get sam2 mask at x,y
bbox = bbox_from_mask(mask) # bbox around sam2 mask
width = abs(box[0] - box[2])
height = abs(box[1] - box[3])
return width, height

Figure 11. Python Implementation of Predefined Modules. VADAR uses Molmo [8] for object detection, SAM2 [22] for segmentation,
GPT4o [1] for VQA, and UniDepth [31] for depth estimation.

Propose only new method signatures to add to the existing API.

Available Primitives: image, int, string, list, tuple

Current API:
{current_api_signatures}

Next, I will ask you a series of questions that reference an image and are solvable with a python program that uses
the API I have provided so far. Please propose new method signatures with associated docstrings to add to the API that
would help modularize the programs that answer the questions.

For each proposed method, output the docstring inside <docstring></docstring> immediately followed by the method
signature for the docstring inside <signature></signature>. Do not propose methods that are already in the API.

Please ensure that you ONLY add new methods when necessary. Do not add new methods if you can solve the problem with
combinations of the previous methods!

Added methods should be simple, building minorly on the methods that already exist.

Importantly, new methods MUST start with an underscore. As an example, you may define a "_get_material" method. Please
ensure you ALWAYS start the name with an underscore.

Again, output the docstring inside <docstring></docstring> immediately followed by the method signature for the
docstring inside <signature></signature>.

{questions}

Figure 12. Signature Agent Prompt used for both CLEVR and OMNI3D-BENCH.

Implement a method given a docstring and method signature, using the API specification as necessary.
Current API:
{pre_defined_signatures}
{generated_signatures}

Here are some examples of how to implement a method given its docstring and signature:
<docstring>
\"\"\"
Locates objects that are on the left of the reference object.
Args:

image (IMAGE): Image to search.
ref_x (int): X coordinate of reference object in pixel space.
ref_y (int): Y coordinate of reference object in pixel space.

Returns:
points (list): list of [x, y] coordinates for objects in pixel space matching description to the left.

\"\"\"
</docstring>
<signature>def objects_left(image, ref_x, ref_y):</signature>
<implementation>
objects_left = []
all_objects = loc(image, object_prompt=’objects’)
for object_point in all_objects:

x, y = object_point
if same_object(image, ref_x, ref_y, x, y):

continue
if x < ref_x:

objects_left.append(object_point)
return objects_left
</implementation>
<docstring>
\"\"\"
Gets the material of the given object.
Args:

image (IMAGE): Image that the object is contained in.
ref_x (int): X coordinate of reference object in pixel space.
ref_y (int): Y coordinate of reference object in pixel space.

Returns:
str: Material of the object.

\"\"\"
</docstring>
<signature>def object_material(image, ref_x, ref_y):</signature>
<implementation>
material = vqa(image=image, question=’What material is this object?’, x=ref_x, y=ref_y)
return material
</implementation>
<docstring>
\"\"\"
Checks if an object 1 is in front of object 2.
Args:

image (IMAGE): Image that the object is contained in.
x_1 (int): X coordinate of object 1 in pixel space.
y_1 (int): Y coordinate of object 1 in pixel space.
x_2 (int): X coordinate of object 2 in pixel space.
y_2 (int): Y coordinate of object 2 in pixel space.

Returns:
bool: True if object 1 is in front of object 2, False otherwise

\"\"\"
</docstring>
<signature>def in_front_of(image, x_1, y_1, x_2, y_2):</signature>
<implementation>
depth_1 = depth(image, x_1, y_1)
depth_2 = depth(image, x_2, y_2)
return depth_1 < depth_2
</implementation>
<docstring>
\"\"\"
Checks if object1 has the same size as object2
Args:

image (IMAGE): Image that the object is contained in.
x_1 (int): X coordinate of object 1 in pixel space.
y_1 (int): Y coordinate of object 1 in pixel space.
x_2 (int): X coordinate of object 2 in pixel space.
y_2 (int): Y coordinate of object 2 in pixel space.

Returns:
bool: True if object 1 has the same size as object 2, False otherwise

\"\"\"
</docstring>
<signature>def same_size(image, x_1, y_1, x_2, y_2):</signature>
<implementation>
object_1_size = vqa(image=image, question=’What size is this object?’, x=x_1, y=y_1)
object_2_size = vqa(image=image, question=’What size is this object?’, x=x_2, y=y_2)
return object_1_size == object_2_size
</implementation>

Here are some helpful tips:
1) When you need to search over objects satisfying a condition, remember to check all the objects that satisfy the condition and don’t just return the first one.
2) You already have an initialized variable named "image" - no need to initialize it yourself!
3) When searching for objects to compare to a reference object, make sure to remove the reference object from the retrieved objects. You can check if two objects are
the same with the same_object method.

Do not define new methods here, simply solve the problem using the existing methods.
Now, given the following docstring and signature, implement the method, using the API specification as necessary. Output the implementation inside <implementation></
implementation>.
Again, Output the implementation inside <implementation></implementation>.
<docstring>{docstring}</docstring>
<signature>{signature}</signature>

Figure 13. Implementation Agent Prompt for CLEVR. This prompt differs from the prompt used for OMNI3D-BENCH as we omit
examples illustrating usage of the get 2D object size method. The prompt features Weak ICL examples illustrating correct usage of
the pre-defined modules, as well as Pseudo ICL in the form of natural language instructions.

Implement a method given a docstring and method signature, using the API specification as necessary.
Current API:
{predef_signatures}
{generated_signatures}
Here are some examples of how to implement a method given its docstring and signature:
<docstring>
\"\"\" Locates objects that are on the left of the reference object.
Args:

image (IMAGE): Image to search.
ref_x (int): X coordinate of reference object in pixel space.
ref_y (int): Y coordinate of reference object in pixel space.

Returns:
points (list): list of [x, y] coordinates for objects in pixel space matching description to the left.

\"\"\"
</docstring>
<signature>def objects_left(image, ref_x, ref_y):</signature><implementation>
objects_left = []
all_objects = loc(image, object_prompt=’objects’)
for object_point in all_objects:

x, y = object_point
if same_object(image, ref_x, ref_y, x, y):

continue
if x < ref_x:

objects_left.append(object_point)
return objects_left </implementation>
<docstring>
\"\"\" Gets the material of the given object.
Args:

image (IMAGE): Image that the object is contained in.
ref_x (int): X coordinate of reference object in pixel space.
ref_y (int): Y coordinate of reference object in pixel space.

Returns:
str: Material of the object.

\"\"\"
</docstring>
<signature>def object_material(image, ref_x, ref_y):</signature><implementation>
return vqa(image=image, question=’What material is this object?’, x=ref_x, y=ref_y) </implementation>
<docstring>
\"\"\" Checks if an object 1 is in front of object 2.
Args:

image (IMAGE): Image that the object is contained in.
x_1 (int): X coordinate of object 1 in pixel space.
y_1 (int): Y coordinate of object 1 in pixel space.
x_2 (int): X coordinate of object 2 in pixel space.
y_2 (int): Y coordinate of object 2 in pixel space.

Returns:
bool: True if object 1 is in front of object 2, False otherwise

\"\"\"
</docstring>
<signature>def in_front_of(image, x_1, y_1, x_2, y_2):</signature> <implementation>
depth_1, depth_2 = depth(image, x_1, y_1), depth(image, x_2, y_2)
return depth_1 < depth_2 </implementation>
<docstring>
\"\"\" Checks if object1 has the same size as object2
Args:

image (IMAGE): Image that the object is contained in.
x_1 (int): X coordinate of object 1 in pixel space.
y_1 (int): Y coordinate of object 1 in pixel space.
x_2 (int): X coordinate of object 2 in pixel space.
y_2 (int): Y coordinate of object 2 in pixel space.
epsilon (float): Acceptable margin of error in sizes.

Returns:
bool: True if object 1 has the same size as object 2, False otherwise

\"\"\"
</docstring>
<signature>def same_size(image, x_1, y_1, x_2, y_2, epsilon):</signature> <implementation>
object_1_height, object_1_width = get_2D_object_size(image, x_1, y_1)
object_2_height, object_2_width = get_2D_object_size(image, x_2, y_2)
return abs(object_1_height - object_2_height) < epislon and abs(object_1_width - object_2_width) < epsilon </implementation>
<docstring>
\"\"\" Returns a list of objects in the images
Args:

image (IMAGE): Image to search for objects in
Returns:

list: List of strings corresponding to all of the objects in the image.
\"\"\"
</docstring>
<signature>def get_object_list(image):</signature> <implementation>
objects = []
object_points = loc(image, object_prompt=’objects’)
for object_point in object_coords:

obj_x, obj_y = object_point
objects.append(vqa(image, "What is this object?", obj_x, obj_y))

return objects </implementation>
Here are some helpful definitions:
1) 2D distance/size refers to distance/size in pixel space. 2) 3D distance/size refers to distance/size in the real world. 3D size is equal to 2D size times the
depth of the object. 3) "On" is defined as the closest object ABOVE another object. Only use this definition for "on". 4) "Next to" is defined as the closest object.
5) Width is the same as length. 6) "Depth" measures distance from the camera in 3D.

Here are some helpful tips:
1) When you need to search over objects satisfying a condition, remember to check all the objects that satisfy the condition and don’t just return the first one. 2)
You already have an initialized variable named "image" - no need to initialize it yourself! 3) When searching for objects to compare to a reference object, make sure
to remove the reference object from the retrieved objects. You can check if two objects are the same with the same_object method. 4) Do not assume that the objects

you see in these questions are all of the objects you will see, keep the methods general. 5) If two objects have the same 2D width, then the object with the largest
depth has the largest 3D width. 6) If two objects have the same 2D height, then the object with the largest depth has the largest 3D height. 7) 2D sizes convey the
height and width in IMAGE SPACE. To convert to height and width in 3D space, it needs to be multiplied by the depth! 8) If you are given a reference size, scale your
output predicted size accordingly! Do not define new methods here, simply solve the problem using the existing methods. Now, given the following docstring and

signature, implement the method, using the API specification as necessary. Output the implementation inside <implementation></implementation>. Again, Output the
implementation inside <implementation></implementation>.
<docstring>
{docstring}
</docstring>
<signature>{signature}</signature>

Figure 14. Implementation Agent Prompt for OMNI3D-BENCH. The prompt features Weak ICL examples illustrating correct usage of
the pre-defined modules, as well as Pseudo ICL in the form of natural language instructions and definitions.

You are an expert logician capable of answering spatial reasoning problems with code. You excel at using a predefined
API to break down a difficult question into simpler parts to write a program that answers spatial and complex
reasoning problem.
Answer the following question using a program that utilizes the API to decompose more complicated tasks and solve the
problem.
Available sizes are {{small, large}}, available shapes are {{square, sphere, cylinder}}, available material types are
{{rubber, metal}}, available colors are {{gray, blue, brown, yellow, red, green, purple, cyan}}.
The question may feature attributes that are outside of the available ones I specified above. If that’s the case,
please replace them to the most appropriate one from the attributes above.
I am going to give you an example of how you might approach a problem in psuedocode, then I will give you an API and
some instructions for you to answer in real code.

Example:
Question: "What is the shape of the matte object in front of the red cylinder?"
Solution:
1) Find all the cylinders (loc(image, ’cylinders’))
2) If cylinders are found, loop through each of the cylinders found
3) For each cylinder found, check if the color of this cylinder is red. Store the red cylinder if you find it and
break from the loop.
4) Find all the objects.
5) For each object, check if the object is rubber (matte is not in the available attributes, so we replace it with
rubber)
6) For each rubber object O you found, check if the depth of O is less than the depth of the red cylinder
7) If that is true, return the shape of that object

Now here is an API of methods, you will want to solve the problem in a logical and sequential manner as I showed you
------------------ API ------------------
{pre_defined_signatures}
{api}
------------------ API ------------------
Please do not use synonyms, even if they are present in the question.
Using the provided API, output a program inside the tags <program></program> to answer the question.
It is critical that the final answer is stored in a variable called "final_result".
Ensure that the answer is either yes/no, one word, or one number.
Here are some helpful tips:
1) When you need to search over objects satisfying a condition, remember to check all the objects that satisfy the
condition and don’t just return the first one.
2) You already have an initialized variable named "image" - no need to initialize it yourself! 3) Do not define new
methods here, simply solve the problem using the existing methods.
3) When searching for objects to compare to a reference object, make sure to remove the reference object from the
retrieved objects. You can check if two objects are the same with the same_object method.
Again, available sizes are {{small, large}}, available shapes are {{square, sphere, cylinder}}, available material
types are {{rubber, metal}}, available colors are {{gray, blue, brown, yellow, red, green, purple, cyan}}.
Again, answer the question by using the provided API to write a program in the tags <program></program> and ensure the
program stores the answer in a variable called "final_result".
It is critical that the final answer is stored in a variable called "final_result".
Ensure that the answer is either yes/no, one word, or one number.
AGAIN, answer the question by using the provided API to write a program in the tags <program></program> and ensure the
program stores the answer in a variable called "final_result".
You do not need to define a function to answer the question - just write your program in the tags. Assume "image" has
already been initialized - do not modify it!
<question>{question}</question>

Figure 15. Program Agent Prompt for CLEVR. In the prompt, we provide a list of all available attributes in CLEVR, a Pseudo ICL
example in natural language, and some helpful tips.

You are an expert logician capable of answering spatial reasoning problems with code. You excel at using a predefined
API to break down a difficult question into simpler parts to write a program that answers spatial and complex
reasoning problem.
Answer the following question using a program that utilizes the API to decompose more complicated tasks and solve the
problem.
I am going to give you two examples of how you might approach a problem in psuedocode, then I will give you an API and
some instructions for you to answer in real code.

Example 1:
Question: "What is the shape of the red object in front of the blue pillow?"
Solution:
1) Find all the pillows (loc(image, ’pillow’)).
2) If pillows are found, loop through each of the pillows found.
3) For each pillow found, check if the color of this pillow is blue. Store the blue pillow if you find it and break
from the loop.
4) Find all the objects.
5) For each object, check if the object is red.
6) For each red object O you found, check if the depth of O is less than the depth of the blue pillow.
7) If that is true, return the shape of that object.

Example 2:
Question: "How many objects have the same color as the metal bowl?"
Solution:
1) Set a counter to 0
2) Find all the bowls (loc(image, ’bowls’)).
3) If bowls are found, loop through each of the bowls found.
4) For each bowl found, check if the material of this bowl is metal. Store the metal bowl if you find it and break
from the loop.
5) Find and store the color of the metal bowl.
6) Find all the objects.
7) For each object O, check if O is the same object as the small bowl (same_object(image, metal_bowl_x, metal_bowl_y,
object_x, object_y)). If it is, skip it.
8) For each O you don’t skip, check if the color of O is the same as the color of the metal bowl.
9) If it is, increment the counter.
10) When you are done looping, return the counter.

Now here is an API of methods, you will want to solve the problem in a logical and sequential manner as I showed you
------------------ API ------------------
{predef_signatures}
{api}
------------------ API ------------------
Please do not use synonyms, even if they are present in the question.
Using the provided API, output a program inside the tags <program></program> to answer the question.
It is critical that the final answer is stored in a variable called "final_result".
Ensure that the answer is either yes/no, one word, or one number.
Here are some helpful definitions:
1) 2D distance/size refers to distance/size in pixel space.
2) 3D distance/size refers to distance/size in the real world. 3D size is equal to 2D size times the depth of the
object.
3) "On" is defined as the closest object ABOVE another object. Only use this definition for "on".
4) "Next to" is defined as the closest object.
5) Width is the same as length.
6) "Depth" measures distance from the camera in 3D.
Here are some helpful tips:
1) When you need to search over objects satisfying a condition, remember to check all the objects that satisfy the
condition and don’t just return the first one.
2) You already have an initialized variable named "image" - no need to initialize it yourself!
3) When searching for objects to compare to a reference object, make sure to remove the reference object from the
retrieved objects. You can check if two objects are the same with the same_object method.
4) Do not assume that the objects you see in these questions rae all of the objects you will see, keep the methods
general.
5) If two objects have the same 2D width, then the object with the largest depth has the largest 3D width.
6) If two objects have the same 2D height, then the object with the largest depth has the largest 3D height.
7) 2D sizes convey the height and width in IMAGE SPACE. To convert to height and width in 3D space, it needs to be
multiplied by the depth!
8) If you are given a reference size, scale your output predicted size accordingly!
Again, answer the question by using the provided API to write a program in the tags <program></program> and ensure the
program stores the answer in a variable called "final_result".
It is critical that the final answer is stored in a variable called "final_result".
Ensure that the answer is either yes/no, one word, or one number.
AGAIN, answer the question by using the provided API to write a program in the tags <program></program> and ensure the
program stores the answer in a variable called "final_result".
You do not need to define a function to answer the question - just write your program in the tags. Assume "image" has
already been initialized - do not modify it!
<question>{question}</question>

Figure 16. Program Agent Prompt for OMNI3D-BENCH. The prompt features Pseudo ICL in the form of two natural language examples
and helpful tips for handling 2D and 3D dimensions.

	Introduction
	Related Work
	Method
	API Generation
	Program Synthesis

	Experiments
	A Benchmark for Spatial Reasoning in 3D
	Results on Spatial Reasoning in 3D
	Ablations

	Limitations & Future Work
	Prompts
	Additional Quantitative Analysis
	More information on Omni3D-Bench
	Comparison to VSI-Bench
	Qualitative Examples on CLEVR
	Qualitative Examples on Omni3D-Bench
	Qualitative Examples on GQA

