
ShapeShifter: 3D Variations Using Multiscale and Sparse Point-Voxel Diffusion

Nissim Maruani
Inria, Université Côte d’Azur

nissim.maruani@inria.fr

Wang Yifan
Adobe Research

yifwang@adobe.com

Matthew Fisher
Adobe Research

matfishe@adobe.com

Pierre Alliez
Inria, Université Côte d’Azur

pierre.alliez@inria.fr

Mathieu Desbrun
Inria/X, IP Paris

mathieu.desbrun@inria.fr

This supplementary material provides additional details,
results, and comparisons.

(a) Input Geometry (b) Ours (c) Rodin

Figure 1. ShapeShifter. Given a 3D exemplar (left), we train a hi-
erarchical diffusion model to create novel variations that preserve
the geometric details and styles of the exemplar (center), whereas
a large generative model such as Rodin [6] tends to lose the geo-
metric details present in the input (right).

1. Additional results and renderings
We provide more results in Fig. 1, 4, and 5 to better illus-
trate the outputs of ShapeShifter on a variety of reference
models. Note that we also show that ShapeShifter can gen-
erate purely geometric variants from untextured meshes, see
last result in Fig. 5.

1.1. Comparison to SSG
We provide additional comparisons with SSG [4], which
is a 3D generalization of SinGAN [3] trained on multi-
scale triplane occupancy fields. Tab. 1 shows quantita-
tive evaluation on models for which SSG provides pub-
licly available outputs, demonstrating the higher quality of
ShapeShifter. Furthermore, we demonstrate in Fig. 2 that
the typical results of this GAN-based method exhibit exag-
gerated smoothness like in all existing techniques, and often
suffer from voxelized artifacts as well.

1.2. Data-intensive vs. exemplar-based generation
In this section, we discuss the value of exemplar-based 3D
generation in light of the recent advancements in 3D gen-
eration models trained on millions of examples. The lat-

(a) Input Geometry (b) ShapeShifter (c) SSG

Figure 2. Visual inspection of SSG [4] results. While SSG can
generate 3D outputs with very short inference time, results are typ-
ically blobby or overly smooth, with spurious artifacts often vis-
ible due to its voxel-based generation process. In contrast, our
method generates better sharp edges and subtle details.

ter can be used to create highly diverse 3D assets and pro-
vide intuitive user controls through simple text and images.
However, such models require immense computational re-
sources for training and inference. Yet, as shown in Fig. 1,
the state-of-the-art generator Rodin [6] (1.5B parameters)
fails to create convincing geometric details comparable to
those generated by our model.

Furthermore, the control provided by such models is lim-
ited, as the generation can only adhere to extremely coarse
guidance. For example, in Fig. 1, we use the exemplar mesh
as part of the inputs to Rodin for a conditioned generation.

1



Metric Method acropolis house small-town wood

G-Qual. ↓ SSG 2.81 0.91 1.71 0.07
ShapeShifter 0.01 0.01 1.00 0.02

G-Div. ↑ SSG 0.081 0.01 0.19 0.11
ShapeShifter 0.04 0.01 0.60 0.08

Table 1. Evaluating geometric quality and diversity using SS-
FID and pairwise IoU scores. As we discussed in the main paper
and in Sec. 2, both metrics have their blindspots: SSFID tends to
overlook geometric details, while pairwise IoU systematically re-
wards artifacts.

However, the output (right) completely loses the styles and
details present in the exemplar mesh.

2. Additional comments on metrics
While we use the two commonly-used metrics (geomet-
ric quality and diversity through SSFID and pairwise IoU
scores) to evaluate our results and compare them to prior
art, a few comments are in order.

First, the validity of these two scores is debatable. While
geometric quality is arguably fair but cannot really gauge
the diversity of the results, the measure of diversity itself
is quite delicate to analyze. In a sense, the diversity score
rewards noise, not just real diversity. For instance, ten grids
of random binary values would get a diversity of 0.66, while
ten grids of axis-aligned planes that are not overlapping
would have a score of 1.0 — so a diversity score mixes
different properties. This partial inadequacy of the score
is the reason why we state in the main paper that geomet-
ric quality and geometric diversity should really be consid-
ered together to infer the success of an approach. More-
over, we also point out that the diversity scores should be
clearly smaller for very structured models (like the acropo-
lis model) than for free-form or organic shapes; our results
have scores in line with this expected behavior, which seems
more meaningful than systematic high scores which would
point to noise artifacts instead of good results.

Second, we wish to point out that our scores of
Sin3DM [5] are different from the ones they publish. The
reason is that Sin3DM applies a pre-processing step to make
the input meshes watertight. This initial step systematically
inflates small details and thin surfaces such as the roof of
the house or the entablature of the acropolis, which negates
many of the advantages of one-shot generative modeling: it
degrades (at times severely) the input, losing the very reason
why creating variants of a carefully-designed input model
is highly sought after, i.e., the high-quality geometry of the
exemplar. So we compared their results to the unprocessed
input models, and did not re-train their neural network be-
cause we assumed that they made their best efforts to fit
ground-truth shapes. So one should be aware that the low
geometric quality scores we provide reflect both the degra-

Method Level 0 Level 1 Level 2 Level 3 Level 4

ShapeShifter 0.49 0.17 0.18 0.26 0.78
Sin3DM - 5.18 - - -

Table 2. Inference timing for generating a single variation. We
report the inference time at each level for generating a single vari-
ation and compare it with Sin3DM, which has a grid resolution
equivalent to our second level (level 1). Note that in the main
paper, we reported the inference time for 10 variations instead.
DDIM sampling is used for both methods.

dations of the pre-processing step and of their SDF-based
generative approach — again, to account for the real use of
these generative approaches.

3. Inference timings
In the main paper, the inference times for ShapeShifter
and Sin3DM are reported for the generation of 10 variants.
Here, we provide the inference timing for generating a sin-
gle variant (i.e., using a batch size of 1 instead of 10) as
shown in Tab. 2.

Our method generates a single variant in less than 2 sec-
onds: approximately 0.5 seconds for the coarsest level, fol-
lowed by less than 1.5 seconds in total for the four finer
levels. In comparison, Sin3DM requires around 5 seconds,
while Sin3DGen takes over 3 minutes, excluding the time
needed for optimizing the input plenoxels and converting
them to a mesh. Notably, our method produces the coarsest
level in under half a second, which can be directly splatted
using [2] (see the video for live demonstrations). In con-
trast, Sin3DM[5] takes 5.18 seconds to process an equiva-
lent grid size (323).

(a) QEM averaging (b) standard averaging

Figure 3. QEM-averaging ablation. While QEM-averaging (pro-
posed in [1]) keeps sharp features (like corners or spikes) in place
helping our generative approach maintain these local details, a
usual averaging would move the “corner” points inwards, increas-
ing the probability of smoothing features out in generated variants.

4. QEM averaging
Finally, we demonstrate why our use of QEM averag-
ing during our fine-to-coarse analysis of the input mod-



els helps preserve sharp features of the ground truth. As
Fig. 3 demonstrates, standard scale-by-scale averaging of
the points and normals from the finest sparse voxel grid all
the way to the coarsest grid leads to drifts of the salient fea-
tures: for instance, the bottom left corner of the house has
migrated inwards, which may create rounding of the corner.
Instead, applying the QEM averaging defined in the PoNQ
method [1] places the coarsest point on the corner, and of
the intermediate points to remain right there as well — re-
sulting in outputs which will better preserve this geometric
feature.

References
[1] Nissim Maruani, Maks Ovsjanikov, Pierre Alliez, and Math-

ieu Desbrun. PoNQ: A Neural QEM-Based Mesh Representa-
tion. In 2024 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3647–3657, Seattle, WA,
USA, 2024. IEEE. 2, 3

[2] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-
lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia
Gkioxari. Accelerating 3d deep learning with pytorch3d.
arXiv:2007.08501, 2020. 2

[3] Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. Sin-
gan: Learning a generative model from a single natural image.
In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 4570–4580, 2019. 1

[4] Rundi Wu and Changxi Zheng. Learning to generate 3d
shapes from a single example. ACM Transactions on Graphics
(TOG), 41(6):1–19, 2022. 1

[5] Rundi Wu, Ruoshi Liu, Carl Vondrick, and Changxi Zheng.
Sin3DM: Learning a diffusion model from a single 3d tex-
tured shape. In International Conference on Learning Repre-
sentations, 2024. 2

[6] Longwen Zhang, Ziyu Wang, Qixuan Zhang, Qiwei Qiu, Anqi
Pang, Haoran Jiang, Wei Yang, Lan Xu, and Jingyi Yu. Clay:
A controllable large-scale generative model for creating high-
quality 3d assets. ACM Transactions on Graphics (TOG), 43
(4):1–20, 2024. 1



(a) Input Shape (b) Generated Shape (ours) (c) Generated Shape (ours)

Figure 4. Samples of our results I. This figure shows a variety of input models and some of the generated variants (both shown without
and with texture to facilitate visual inspection) ShapeShifter outputs.



(a) Input Shape (b) Generated Shape (ours) (c) Generated Shape (ours)

Figure 5. Samples of our results II. This figure shows input models that were not used in the main paper, and some of the generated
variants (both shown without and with texture to facilitate visual inspection) ShapeShifter outputs. Note that the last two examples (vase
and pig) are an ablation test where we do not use colors among the per-voxel features in our approach.


	Additional results and renderings
	Comparison to SSG
	Data-intensive vs. exemplar-based generation

	Additional comments on metrics
	Inference timings
	QEM averaging

