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1. Implementation Details

HeatEncoder We train HeatEncoder using 1 NVIDIA
RTX A6000 with a batch size of 32 and use the AdamW
optimizer with a learning rate of 1e-5 for 50 epochs. The
learning rate is multiplied by 0.2 each time it reaches 20,
30, and 40 epochs. We use the 3D joint loss, 2D joint loss,
and SMPL parameter loss and train on Human3.6M [4] and
MPI-INF-3DHP [5] datasets for about 3.5K iterations per
epoch. The training data ratio is approximately 2:1. Heat-
Encoder training takes about three days.

HeatFormer We then freeze HeatEncoder and train the
entire HeatFormer using 1 NVIDIA A100 with a batch size
of 8 and 4 views for each batch. Same as the HeatEncoder,
we use the AdamW optimizer with a learning rate of 1e-5
for 50 epochs and the learning rate is multiplied by 0.2 each
time it reaches 30 and 40 epochs. The training dataset ratio
is similar to HeatEncoder. HeatFormer training takes about
six days.

2. Dataset Details

We describe the details of Human3.6M [4], MPI-INF-3DHP
[5], BEHAVE [1] and RICH [3] datasets. The BEHAVE and
RICH datasets are used only for testing.

Human3.6M We preprocess the Human3.6M dataset fol-
lowing [2]. Human3.6M does not have ground-truth SMPL
parameters. Instead, we use the pseudo ground-truth SMPL
parameters generated by NeuralAnnot [6]. We sample the
dataset every 20 frames which amounts to about 20K frames
of training data for each view.

MPI-INF-3DHP Same as the Human3.6M dataset, we
preprocess the data following [2] and use pseudo ground-
truth SMPL parameters generated from NeuralAnnot [6].
We removed data whose MPJPE computed on the pseudo
ground-truth SMPL parameters exceeds 40mm as they lack

reliable ground truth on only train split. We sample every
10 frames which results in about 10K frames for each view.

BEHAVE The BEHAVE dataset is a dataset capturing,
with 4 views, human-object interactions in natural environ-
ments. We use the BEHAVE dataset to evaluate the geen-
ralization capability and occlusion-robustness of our model.
We follow the train and test splits of the BEHAVE dataset
and evaluate and compare on the test data. Qualitative re-
sults on the BEHAVE dataset are shown in Sec. 3.

RICH The RICH dataset is a real scene dataset taken
from 4 views. We show qualitative results on the RICH
dataset in Sec. 3.

3. Qualitative Results

We show qualitative results for different datasets, Hu-
man3.6M Fig. 5, MPI-INF-3DHP Fig. 6, BEHAVE Fig. 7,
and RICH Fig. 8. All results are estimated by HeatFormer
trained on the Human3.6M and MPI-INF-3DHP datasets.
The results clearly show that HeatFormer is an occlusion-
robust, view-flexible, and generaliziable neural optimizer
for multiview HMR.

4. Calibration

HeatFormer uses camera extrinsics only for AdaFuse [7]
and heatmap projection. HeatFormer can estimate the
SMPL parameters without camera extrinsics by skipping
AdaFuse and estimating weak-perspective camera param-
eters instead of the translation calculated with extrinsics.
Tab. 9 shows accuracy comparison between HeatFormer ap-
plied to calibrated and uncalibrated cameras for 4 views of
3-iter model. As the results show, leveraging calibration in-
formation leads to higher accuracy, but even uncalibrated
HeatFormer achieves reasonable accuracy.
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Figure 5. Qualitative results on the Human3.6M [4] dataset. HeatFormer successfully leverages the multiview observations to resolve the
complex occlusions.

Figure 6. Qualitative results on the MPI-INF-3DHP [5] dataset. The body shape and pose behind various kinds of occlusions are success-
fully recovered.

5. Ablation Study

HeatFormer achieves HMR with neural optimization. We
use three forward inferences through the decoder (three un-

rolled iterations) by default. Tab. 10 shows the accuracy for
models trained for different numbers of iterations (1 to 5).
The results clearly show that the more iterations the better
but with diminishing returns. We empirically found three or



Figure 7. Qualitative results on the BEHAVE [1] dataset. This dataset is not used in training. HeatFormer generalizes well to unseen scenes
and unseen types of occlusion.

MPJPE↓ PA-MPJPE↓
calibrated(iter3) 30.3 23.2
uncalibrated(iter3) 42.5 25.8

Table 9. The comparison between calibrated and uncalibrated of
3-iter model.

the # of iterations MPJPE ↓ PA-MPJPE ↓ MPVPE ↓
1 34.1 27.2 43.9
2 30.7 25.2 39.0
3 28.6 23.1 36.2
4 27.2 22.1 35.2
5 27.5 22.4 34.9

Table 10. Ablation study on the number of forward inferences
through the decoder (i.e., number of neural optimization itera-
tions). We train on Human3.6M and MPI-INF-3DHP and test on
Human3.6M.

four iterations suffice for the HMR accuracy to converge.
HeatEncoder consolidates the joint heatmaps for each

view to extract a rich integrated feature map reflecting
the shape and pose of the person observed in the view.
This consolidation is essential for the decoder to align the
heatmaps through cross-attention and its iterative applica-
tion to arrive at accurate view-dependent SMPL estimates.
The HeatEncoder applied both to the input heatmaps as well

MPJPE ↓ PA-MPJPE ↓ MPVPE ↓
w/HeatEncoder 28.6 23.1 36.2
w/o 30.5 25.6 38.3

Table 11. Evaluation of the effectiveness of HeatEncoder by re-
placing it with simple max-pooling and ViT feature extraction
(“w/o”). The accuracy is evaluated on Human3.6M. The results
clearly show that HeatEncoder is essential for heatmap consolida-
tion in each view.

as the heatmaps computed from the current SMPL estimate
plays a crucial role in making full use of the spatial coordi-
nation of joints in each view. We evaluate the effectiveness
of HeatEncoder by replacing it with a simple alternative of
just taking the max values of the heatmaps across all joints
(i.e., per-pixel max-pooling) and applying a heatmap-pre-
trained ViT to extract features. We train on Human3.6M
and MPI-INF-3DHP and test on Human3.6M. The results
shown in Tab. 11 clearly demonstrate the effectiveness of
HeatEncoder.

HeatFormer leverages multiview images and updates
SMPL parameters with cross-attention. As an abalation
study of the decoder of HeatFormer, we replace it with
simple pooling and MLP. Tab. 12 shows the results which
clearly demonstrate the effectiveness of the architecture of
HeatFormer.

Heatmaps computed from the current SMPL model are
combined with image features computed from the input



Figure 8. Qualitative results on RICH [3] dataset. This dataset is not used in training. The results clearly demonstrate the strong general-
ization capability and occlusion-robustness of HeatFormer.

MPJPE↓ PA-MPJPE↓
w/HeatFormer 28.6 23.1
w/o 60.4 46.4

Table 12. Evaluation of the effectiveness of HeatFormer by replac-
ing it with simple pooling and MLP. The accuracy is calculated on
Human3.6M. The results clearly show that the decoder of Heat-
Former is essential for neural optimization.

views to form decoder queries for cross-attention with the
encoder output tokens. Without these image features, the
cross-attention is unlikely to produce meaningful transfor-
mations to the heatmaps as the decoder would not know
view-correspondences. To confirm this, we evaluate the
model without combining image features with the view-
dependent heatmaps as decoder queries. Please note that
we use image features only for global orientation estima-

MPJPE ↓ PA-MPJPE ↓ MPVPE ↓
w/Image Feature 28.6 23.1 36.2
w/o 42.8 33.8 56.1

Table 13. Evaluation of the effectiveness of using image features
in combination with heatmaps for the decoder queries. The accu-
racy is evaluated on Human3.6M. Combining the image features
is essential for accurate estimation through decoder inference.

tion. We train on Human3.6M and MPI-INF-3DHP, and
test on Human3.6M. Tab. 13 show the results which clearly
show that the use of image features with the heatmaps is
essential for accurate decoder inference.

A key contribution of HeatFormer lies in the adop-
tion of heatmaps as the fundamental representation of pose
and their seamless integration in the neural optimization
pipeline, which is essential to obtain dense spatial gradi-



MPJPE↓ PA-MPJPE↓
Heatmap 30.3 23.2
Joint 51.2 37.0

Table 14. Comparison using heatmap representation with direct
tokenization of keypoint locations.
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Figure 9. (a) HeatFormer decoder in which the spatial configu-
ration of heatmaps are retained and view-dependent outputs are
averaged pooled to compute the SMPL parameters. (b) A variant
in which the patchified heatmaps for each view are average pooled
before input to the decoder as queries.

MPJPE ↓ PA-MPJPE ↓ MPVPE ↓
(a) 28.6 23.1 36.2
(b) 36.3 26.6 46.0

Table 15. Comparison of the decoders in Fig. 9. The HeatFormer
decoder which retains the spatial configuration of query heatmaps
(a) achieves higher accuracy than the variant that consolidates spa-
tial information of the heatmaps through average pooling before
they are input to the decoder as queries (b).

ents to let it learn to optimize. To confirm the effectiveness
of heatmap representation, we compare with just tokenizing
keypoint locations (i.e., directly input and estimate joint co-
ordinates as tokens). Tab. 14 shows that the heatmaps are
essential for our high accuracy.

SMPL parameters are computed from the decoder output
after average pooling. Retaining the patchified spatial struc-
ture of the decoder queries throughout the cross-attention
and only average pooling after it is essential to fully lever-
age the spatial configuration of the heatmaps across the dif-
ferent views (Fig. 9(a)). We confirm the importance of
retaining this spatial configuration by comparing it with a
variant of the decoder where the patchified heatmaps for
each view are average pooled before input to the decoder
(Fig. 9(b)) and thus the spatial configuration is dampened.
We train on the Human3.6M and MPI-INF-3DHP datasets
and test on the Human3.6M dataset. As Tab. 15 shows re-
taining the spatial configuration of the heatmaps through
cross-attention and then consolidating the views via average
pooling (i.e., the decoder of HeatFormer) achieves higher
accuracy.

MPJPE ↓ PA-MPJPE ↓ MPVPE ↓
(a) 28.6 23.1 36.2
(b) 36.3 22.8 47.6

Table 16. Comparison between view-dependent estimation (a) and
average global estimation (b). Even with the crude averaging, if
necessary, HeatFormer’s view-dependent estimates can be consol-
idated without too much loss in accuracy.

HeatFormer outputs view-dependent SMPL estimates,
i.e., the SMPL parameters explain each image indepen-
dently. If a single estimate is necessary, we could com-
bine these view-dependent estimates in any way suitable
for the downstream task. For instance, if a SMPL model
is necessary for a view in between the input views, SMPL
estimates of closest views can be combined. A simple ap-
proach to consolidating all views would be to average pool
them. We can take the average of the pose parameters with-
out the global orientation and also all the shape parameters.
Tab. 16 shows the results of comparing the accuracies of this
average global SMPL estimate and our view-dependent es-
timates. The view-dependent estimates are naturally more
accurate, but even a crude averaging will not loose too much
accuracy. In general, for downstream tasks, we can select
closest views to achieve higher accuracy than averaging.
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