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Supplementary Material

We encourage readers to watch the supplementary video
for additional details and qualitative results.

1. Implementation Details
1.1. System Details and Hyper parameters
Non-Rigid SLAM: We set the learning weights as fol-
lows: λp = 0.9, λg = 0.1, λiso = 10.0 and λn = 0.002.
For the ARAP regularization [2], we use a nearest neigh-
bor count of 20, a radius of 0.05, and an exponential decay
weight of 500. Keyframes are selected with N = 1. For
the MLP, we use an 8-layer architecture with 256 neurons
per layer. Frequency encoding is set to 1 for time and 4
for position. MLP is implemented with CUDA-optimized
CutlassMLP in tiny-cuda-nn [4] for the fast optimization.

Static SLAM Ablation: We followed the same hyperpa-
rameters as MonoGS [3], but we use normal loss Ln with
the weight λn = 0.01 for the entire mapping process and
λg = 0.5 for the final refinement. For the Replica 3D re-
construction evaluation, we have used the script introduced
in [5].

Offline Non-rigid RGB-D Reconstruction Ablation:
Camera poses are provided by the dataset and remain fixed
during training. For the MLP, we adopt the same archi-
tecture described in [9], consisting of an 8-layer network
with 256 dimensions per layer, where a concatenated fea-
ture vector is input to the fourth layer. The positional en-
coding frequencies are set to 6 for time and 10 for position.
Following the approach in [1, 7], we evaluate the geometric
and appearance metrics against the input views and report
the average values.

2. Camera Pose Jacobian
We provide the detail of the derivation of camera pose jaco-
bian of 2D Gaussian Splatting in ??.

We use the notation from [6]. Let T ∈ SE(3) and
τ = (ρ,θ) ∈ se(3), the left-side partial derivative on the
manifold is defined as:

Df(T )

DT
≜ lim

τ→0

Log(f(Exp(τ) ◦ T ) ◦ f(T )−1)

τ
(1)

Eq ??:
T = Exp(τ ) = exp(τ∧)

= exp
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 , j = 1, . . . , 6, τ ∈ R6. (2)

where the matrices Ej ∈ R4×4 are the SE(3) group
generators and form a basis for se(3):
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We get the partial derivative as follows:
∂
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= Ej , j = 1, . . . , 6. (4)

Therefore, the full derivative is given as:
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Since the meaningful elements of the camera T is 12

number variables, we stack the elements for 12 × 6 matrix
and we obtain
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where R ∈ SO(3) and t ∈ R3 denote the rotation and
translation parts of T .
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3. Sim4D Training/Test Views

We define the training and test views on a sphere, with its
center representing the target object. In spherical coordi-
nates (r, θ, ϕ), we set r = 2.0. The training view is sam-
pled from two arcs on the sphere’s surface, defined by θ ∈
[−10◦, 10◦] and ϕ ∈ [−10◦, 10◦]. The test views are sam-
pled from a circle on the sphere’s surface that pass through
four key points: (θ, ϕ) = (5◦, 0◦), (0◦, 5◦), (−5◦, 0◦), and
(0◦,−5◦). These points are chosen to ensure uniform sam-
pling around the target object while maintaining a clear sep-
aration between the training and test views.

Figure 1. Training and Test Views on the Sim4D Dataset: Blue
indicates training views, and Red indicates test views. Views are
sampled (top right) from an arc on an object-centered sphere (top
left) for dynamic scene reconstruction (bottom).

4. Further Ablation Analysis

4.1. Normal Rigidity Loss

Table 1 presents the quantitative results demonstrating the
effect of the normal rigidity loss defined in Equation ??.
The normal rigidity loss improves the overall geometric
metrics, such as camera ATE and L1 Depth, for the bench-
mark sequences by preserving the local geometric consis-
tency of 2D Gaussians.

ATE RMSE L1 Depth PSNR SSIM LPIPS
Ours full 0.28 1.71 28.47 0.820 0.12
w/o LARAP n 0.52 2.00 29.04 0.853 0.13

Table 1. Ablation Study on LARAP n. We report the average
number of Sim4D dataset.

4.2. Monocular Depth Prior
While our method was primarily tested with RGB-D cam-
era input, we conducted an ablation study using depth input
from the state-of-the-art monocular prediction network [8],
as shown in Table 5. The results demonstrate performance
competitive with SurfelWarp, highlighting the potential for
purely monocular non-rigid SLAM.

4.3. Static SLAM Ablation Analysis
Replica: Table 4 shows the photometric rendering perfor-
mance analysis on the Replica dataset. The results demon-
strate that the 2DGS-based SLAM approach offers an ad-
vantage in achieving accurate appearance reconstruction.

TUM: Table 2 presents the full ablation analysis on the
TUM dataset. The 2DGS-based approach maintains com-
petitive ATE and appearance metrics while achieving sig-
nificantly better geometric rendering accuracy, as reflected
in the Depth L1 error.

Method Metric fr1 fr2 fr3

MonoGS ATE RMSE [cm] ↓ 1.50 1.44 1.49
Depth L1 [cm] ↓ 6.2 13.0 13.0
PSNR [dB] ↑ 23.5 24.65 25.09
SSIM ↑ 0.775 0.785 0.842
LPIPS ↓ 0.26 1 0.201 0.200

MonoGS-2D ATE RMSE [cm] ↓ 1.58 1.2 1.83
Depth L1 [cm] ↓ 3.0 2.3 4.3
PSNR [dB] ↑ 23.63 24.47 24.05
SSIM ↑ 0.782 0.79 0.826
LPIPS ↓ 0.251 0.228 0.223

Table 2. Static SLAM Ablation on TUM Dataset. Comparison
of ATE RMSE, Depth L1, and Rendering Performance Metrics.

Memory Analysis Table 3 presents the average memory
usage on the TUM dataset sequences. Due to the geometri-
cally accurate alignment, 2D Gaussians require fewer prim-
itives to represent the scene, resulting in reduced memory
consumption.

Memory Usage [MB]
MonoGS-2D MonoGS

2.73MB 3.97MB
Table 3. Memory Analysis on TUM RGB-D dataset.

4.4. Offline Non-Rigid RGB-D Reconstruction Ab-
lation

Table 6 provides the full evaluation details of the offline
non-rigid RGB-D reconstruction ablation analysis.
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KillingFusion DeepDeform iPhone
frog duck snoopy seq002 seq004 seq028 teddy mochi haru

Morpheus [7]

Depth L1 [cm] 4.37 3.01 2.30 2.08 1.24 2.26 5.40 0.31 1.63
PSNR [dB] ↑ 27.2 28.17 25.73 27.21 26.94 26.30 23.40 28.12 24.34
SSIM ↑ 0.802 0.716 0.779 0.809 0.823 0.795 0.237 0.623 0.510
LPIPS ↓ 0.31 0.419 0.483 0.301 0.428 0.397 0.776 0.55 0.564

Ours

Depth L1 [cm] 0.65 1.91 12.1 0.78 1.07 1.30 0.32 0.22 0.12
PSNR [dB] ↑ 33.72 32.75 26.95 24.36 24.13 24.02 23.89 36.15 22.60
SSIM ↑ 0.941 0.949 0.899 0.897 0.897 0.902 0.739 0.926 0.690
LPIPS ↓ 0.063 0.073 0.257 0.245 0.313 0.241 0.259 0.131 0.391

Table 6. Offline RGB-D Reconstruction Results
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