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8. Detailed algorithm of batch selection

In this section, we provide a detailed algorithm of the batch
selection introduced in Sec. 4.3. The goal is to select a valu-
able and diverse set of weakly supervised and fully super-
vised instances within the budget B, leveraging the normal-
ized feature vector f̃(x) and the VCR for full and weak
supervision vf(x) and vw(x), as described in Sec. 4.2, for
each x in the unlabeled data pool Du.

The detailed algorithm is presented in Algorithm 2. The
first vector g is selected based on the largest norm from the
set of vectors G = Gf ∪Gw, where Gf = {vf(x)f̃(x)|x ∈
Du} represents the set of the vectors for full supervision
and Gw = {vw(x)f̃(x)|x ∈ Du} represents those set of
the vectors for weak supervision. Subsequent vectors are
sampled from the set G, with the sampling probability of
each vector proportional to the square of its distance D(g)
to the vector closest to the one already selected. If the se-
lected vector g belongs to Gf , the corresponding instance is
fully annotated, and the budget is reduced by Cf . Similarly,
If g belongs to Gw, the instance is weakly annotated, and
the budget is reduced by Cw. This process is repeated until
the budget B is fully consumed.

9. Additional experiments on larger weak su-
pervision costs

In the main paper, we demonstrated that our approach con-
sistently outperforms the conventional AL methods when
the weak supervision cost Cw was 1

2 , 1
4 , and 1

8 , with the full
supervision cost Cf fixed at 1. In this section, we present ad-
ditional experimental results for scenarios where the weak
supervision cost is higher (i.e., the cost difference between
Cf and Cw is small).

Figure 6 shows the classification results on CIFAR100
and CUB200 for Cw = 1

2 , 2
3 , 4

5 , and 1. When Cw is
close to Cf , our approach is observed to outperform or be
comparable to conventional AL methods. Importantly, even
when weak supervision provides no significant cost advan-
tage, our approach remains effective, maintaining perfor-
mance without significant degradation. This is because our
approach adaptively allocates the available budget, achiev-
ing either superior or comparable performance to conven-
tional AL methods, regardless of whether weak supervision
is highly cost-effective or nearly as expensive as full super-
vision.

Algorithm 2 Batch selection

1: Inputs: budget B, annotation cost Cf , Cw, VCR
vf(x), vw(x), and normalized feature f̃(x) for x ∈ Du.

2: Outputs: batch D+
f ,D+

w .
3: Gf ← {vf(x)f̃(x)|x ∈ Du}
4: Gw ← {vw(x)f̃(x)|x ∈ Du}
5: G← Gf ∪Gw

6: Select g with the largest norm from G
7: if g ∈ Gf then
8: G+

f ← {g} , Gf ← Gf \ {g} , b← Cf

9: else if g ∈ Gw then
10: G+

w ← {g} , Gw ← Gw \ {g} , b← Cw

11: end if
12: while b < B do
13: Define D(g) := minc∈G+

f ∪G+
w
∥c− g∥2

14: Sample g from G with probability D(g)2∑
g∈G D(g)2

15: if g ∈ Gf then
16: G+

f ← G+
f ∪ {g}, Gf ← Gf \ {g}, b← b+Cf

17: else if g ∈ Gw then
18: G+

w ← G+
w∪{g}, Gw ← Gw\{g}, b← b+Cw

19: end if
20: end while
21: Obtain the batchesD+

f andD+
w with the instance x cor-

responding to G+
f and G+

w , respectively.
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Figure 6. Classification accuracy [%] (↑) of our approach on CI-
FAR100 and CUB200 for weak supervision costs Cw = 1

2
, 2

3
, 4

5

and 1. For comparison, the performance of conventional AL meth-
ods is shown as gray lines.



Table 2. Proportions [%] of weak supervision in the batch.

Round = 1 2 3 4 5
Cw = 1/2 50.00 40.93 28.31 64.52 62.11

= 1/4 50.00 75.79 48.82 65.18 75.42
= 1/8 50.00 78.74 90.84 67.25 85.62

Table 3. Accuracy [%] with five different random seeds.
Round = 1 2 3 4 5

Mean 13.11 22.33 28.44 33.72 37.11
Std. (±0.86) (±2.06) (±0.83) (±1.16) (±1.89)

Table 4. Classification accuracy [%] (↑) on CIFAR100. This table
presents the same results as Figure 2(a) in a tabular format.

Method Round = 1 2 3 4 5
Random 10.86 17.66 21.96 25.55 28.93
Margin 10.86 16.21 22.92 25.63 28.72
MaxConf 10.86 16.28 22.74 25.21 23.54
Entropy 10.86 15.53 20.82 21.08 22.77
Coreset 10.86 17.55 23.48 24.82 27.55
ALBL 10.86 17.55 19.92 23.98 26.09
BADGE 10.86 17.77 22.63 24.83 27.85
APFWA 12.45 20.54 25.35 31.30 33.11
Ours 13.18 21.67 29.28 34.86 40.18

Table 5. Classification accuracy [%] (↑) on CUB200. This table
presents the same results as Figure 2(b) in a tabular format.

Round = 1 2 3 4 5
Random 2.36 3.76 6.06 8.13 14.48
Margin 2.36 4.09 7.28 9.15 13.84
MaxConf 2.36 4.31 7.47 9.61 13.93
Entropy 2.36 4.30 6.49 10.67 10.93
Coreset 2.36 4.19 6.06 8.56 13.51
ALBL 2.36 4.19 5.83 8.13 12.46
BADGE 2.36 3.97 6.09 8.61 13.44
APFWA 1.88 5.20 6.40 10.94 15.69
Ours 2.57 5.21 8.56 13.51 16.79

10. Proportion of two supervision-levels
Table 2 presents the proportions of weakly supervised in-
stances in the batch at each round during the CIFAR100
experiment, with weak supervision costs Cw set to 1

2 , 1
4 ,

and 1
8 . The results show that the allocation of full and

weak supervision is dynamically adjusted based on cost-
effectiveness.

11. Robustness analysis
Table 3 reports the mean and standard deviation of classifi-
cation accuracy across five random seed runs. The mean ac-
curacy exceeds that of conventional AL methods shown in
Figure 2(a), and the small standard deviation demonstrates

the stability and robustness of our approach.

12. Tabular representation of results
Tables 4 and 5 present the classification accuracy [%] on
CIFAR100 and CUB200, respectively, in a tabular format
corresponding to Figures 2(a) and Fig.2(b). These tables
provide a clearer numerical comparison of the conventional
AL methods.
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