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Figure 1. We consider three approaches to compare the ground
truth with respect to the predicted trajectories in order to deter-
mine a mistake. (a) Entropy. (b) Euclidean distance between the
two trajectories. (c) Dynamic Time Warping (DTW). (d) Average
value of the ground truth trajectory at the predicted heatmaps.

A. Implementation details

Our model implementation is primarily based on the
approach outlined in [3], with hyperparameters adjusted
accordingly. Below, we elaborate on the key aspects of our
implementation, highlighting the differences and specific
choices made to enhance the model’s performance.

Code Availability: To ensure reproducibility and provide
further implementation details, we will share the complete
codebase upon publication.
Stride Adjustment: In contrast to the stride of 8 used
in [3], we opted for a stride of 1 during training. This mod-
ification allows the model to process consecutive frames
without skipping, leading to finer granularity in temporal
feature extraction. Our experiments indicated that this ad-
justment results in marginal improvements in both gaze es-
timation and mistake prediction accuracy.
Overfitting Prevention: To mitigate the risk of overfitting,
we incorporated a weight decay parameter set to 0.07. This
regularization technique helps in controlling the complexity
of the model by penalizing large weights, thereby promot-
ing generalization to unseen data.
Batch Size and Frame Processing: We configured the
batch size to process 4 clips, each containing 8 frames.
Specifically, our approach involves processing each video
using non-overlapping windows of 8 consecutive frames.
Consequently, each batch comprises 4 such windows, total-

ing 32 frames per batch (i.e., 8 frames/clip×4 clips/batch =
32 frames/batch). This setting ensures that the model cap-
tures sufficient temporal context while maintaining manage-
able memory usage.
Training Loss Following [3], we consider gaze prediction
as defining a probability distribution over the 2D image
plane of each input frame. Our proposed method lever-
ages an architecture modified for gaze completion to predict
missing segments of gaze trajectories. Ablations on single
frames showed that looking at sequences of frames, which
create a trajectory, is more effective for detecting anoma-
lies due to the importance of changes over time. We train
the model by minimizing the sum of the Kullback–Leibler
divergence between the predicted gaze maps P̂ (i) and the
ground truth ones Q(i) at each frame i:

LKL(P̂ ∥ Q) =
∑
i

P̂ (i) log

(
P̂ (i)

Q(i)

)
(1)

Graphical Illustration of scoring functions Figure 1 illus-
trates the scoring function considered in this study. Entropy
is the only scoring function which does not require any
ground truth gaze as input, but only evaluates the level of
uncertainty of the predicted heatmaps. The Euclidean and
DTW scoring functions compute two forms of distances be-
tween predicted and ground truth trajectories. The heatmap
scoring function evaluates the probability of predicted gaze
under the points indicated by the ground truth trajectory.
The heatmap scoring function achieves best results in our
experiments. The main paper reports the formal definition
of such scoring functions.

MoCoDAD Baseline Following methodologies from [2],
we employ a sliding window approach to segment each
agent’s gaze/hands history. A window size of 8 frames is
utilized, with the initial 4 frames dedicated to condition set-
ting and the subsequent frames for the diffusion process.
Hyperparameters are set as λ1 = λ2 = 1. Training pro-
ceeds end-to-end using the Adam optimizer with a learn-
ing rate of 1 × 10−4, employing exponential decay over
25 epochs. The diffusion process utilizes β1 = 1 × 10−4,
βT = 2 × 10−2 for T = 10, and incorporates the cosine
variance scheduler.

TrajREC Baseline We followed the implementation pro-
posed in TrajREC [5] official code release1, adapting it for

1https://github.com/alexandrosstergiou/TrajREC

https://github.com/alexandrosstergiou/TrajREC


Method Fusion F1 Recall Precision
Gaze Prediction // 0.37 0.65 0.26
Gaze Completion CH 0.38 0.67 0.29
Gaze Completion CH + CORR 0.40 0.70 0.31

Table 1. Comparison of GLC and the proposed Gaze Completion
approach for Gaze Estimation on EPIC-Tent.

gaze/hands trajectory analysis. The approach encodes tem-
porally occluded gaze/hands trajectories, jointly learns la-
tent representations of occluded segments, and reconstructs
trajectories based on expected motions across different tem-
poral segments.

For both methods, if a frame does not contain gaze or
hand keypoints, we exclude that frame from the score cal-
culation for the segment.

Action Type Classification To assess whether the type of
performed action affects the performance of our method,
we grouped actions contained in all three datasets into four
categories: Hand-Eye Coordination, Object Manipulation,
Task Preparation, and Inspection/Verification. For catego-
rization, we prompted GPT-4 with a full list of actions using
the following prompt:

In the context of how gaze affects actions, organize the
following actions into groups that align with gaze literature.
Group the actions from those that involve the most fine-
grained gaze coordination to those that involve less gaze
precision.

The list was then manually revised. The full classifica-
tion is shown in Table 2

B. Additional Ablations
This section reports additional ablations which could not
be included in the submitted paper due to space limits.

B.1. Performance Comparison Across Action Types
Table 3 compares the performance of the considered base-
lines and our proposed method across different action types.

The fully supervised C2F method achieves overall F1
and AUC scores of 0.58 and 0.72, respectively, maintaining
stable performance across the four action types. The best
performance is observed in Inspect/Verify actions (F1: 0.74,
AUC: 0.85), likely due to the strong visual cues inherent to
these tasks (e.g., instruction sheets).

In contrast, under both One-Class and Unsupervised sce-
narios, the proposed gaze-based approaches show varying
performance depending on the action type. Stronger results
are observed in tasks requiring Hand-Eye Coordination and
Object Manipulation skills. Under the One-Class supervi-
sion level, our method achieves an F1 score of 0.741 and
an AUC of 0.839 for hand-eye coordination tasks (+21%

vs Overall AUC). This indicates its effectiveness in learn-
ing “normal” attention patterns and detecting mistakes dur-
ing complex actions where gaze and motor coordination are
crucial.

Conversely, for simpler actions, such as Task Prepara-
tion and Inspect/Verify, the proposed approaches are less
effective. This is likely due to the high gaze variability
inherent in less skill-intensive tasks. For instance, under
the One-Class supervision level, our method achieves an F1
score of 0.257 and an AUC of 0.543 (-24% vs Overall AUC)
for task preparation actions.

B.1.1. Performance of the proposed gaze completion ap-
proach vs standard gaze prediction

Results in main paper Table 1 compared the performance
of the proposed mistake detection method based on
gaze completion versus different methods, including a
baseline method based on the standard gaze prediction
task implemented with the method of [3]. In Table 1, we
instead compare the performance of the proposed gaze
completion approach with standard gaze prediction based
on [3] on the EPIC-Tent dataset. Just using channel fusion
brings a performance boost, achieving an F1-score of 0.38,
recall of 0.67, and precision of 0.29, while combining
channel and correlation fusion brings best results with an
F1-score of 0.40, recall of 0.70, and precision of 0.31,
suggesting that conditioning on partial trajectories makes
gaze prediction less uncertain and the proposed approach
can leverage the informative content provided by the input
trajectory surpassing the performance of standard gaze
prediction. Moreover, the performance in Table 1 correlates
with the results in Table 1 of the main paper, suggesting
that accurate gaze prediction enhances mistake detection
performance. Specifically, the proposed approach excels in
gaze prediction for “Correct execution” frames, although it
loses accuracy for “Mistake” frames. Given that “Correct
execution” frames are generally more frequent, the F1
score improves overall, but the gap in prediction accuracy
between “Correct execution” and “Mistake” frames widens.
This discrepancy, however, benefits trajectory-based com-
parisons in mistake detection, as the increased accuracy in
“Correct execution” frames helps to better identify errors
in subsequent frames.

B.2. Length of prediction and performance

Table 4 ablates performance for different prediction lengths.
Smaller windows lead to higher precision due to short future
trajectories being more predictable, but also lower recall,
with the best F1 score when predicting 4 frames into the
future.
As the prediction window extends from 1 to 4 frames, the
model’s recall improves, indicating more mistakes detected.



Category Dataset Actions

Hand-Eye Coordination

EpicTent assemble, insert stake, insert support, insert support tab, tie top

HoloAssist touch, place, lift, press, flip, unscrew, rotate, slide, insert, close, turn, screw, disassemble

IndustReal fit, plug, tighten, loosen

Object Manipulation

EpicTent spread tent, place guyline

HoloAssist adjust, empty, drop, clean, make, pour, split, mix-stir, stack-pile, load, mount, lock, unlock, shift, grab, pull

IndustReal put, take, pull

Task Preparation

EpicTent pickup/open stakebag, pickup/open supportbag, pickup/open tentbag

HoloAssist withdraw, exchange, hold, break, approach, stand, align

IndustReal align

Inspection/Verification

EpicTent instruction, place ventcover

HoloAssist inspect, validate, point, tap, click, push

IndustReal check, browse

Table 2. Classification of actions by category across datasets based on gaze involvement.

Method Sup. Level Overall F1 Overall AUC Hand-Eye Coord. Object Manip. Task Prep. Inspect/Verif.
F1 AUC F1 AUC F1 AUC F1 AUC

Random // 0.36 0.51 – – – – – – – –
TimeSformer [1] Fully Supervised 0.49 0.67 0.452 0.615 0.474 0.636 0.551 0.691 0.532 0.678
C2F [4] Fully Supervised 0.58 0.72 0.506 0.600 0.5622 0.771 0.5138 0.686 0.741 0.857
GLC [3] One-Class 0.46 0.66 0.524 0.704 0.495 0.665 0.425 0.579 0.396 0.556
Ours One-Class 0.52 0.69 0.741 0.839 0.612 0.734 0.489 0.643 0.244 0.543
Ours + MoCoDAD (H)* One-Class 0.54 0.72 0.753 0.872 0.631 0.764 0.498 0.657 0.257 0.543
GLC [3] Unsupervised 0.44 0.61 0.542 0.694 0.474 0.657 0.406 0.563 0.338 0.526
Ours Unsupervised 0.51 0.69 0.711 0.839 0.603 0.723 0.483 0.637 0.240 0.531
Ours + MoCoDAD (H)* Unsupervised 0.52 0.70 0.714 0.862 0.602 0.754 0.489 0.646 0.253 0.535
* Late fusion

Table 3. Mistake detection results on EPIC-Tent by category. Best results are in bold, second best results are underlined.

Baseline Future frames F1 Precision Recall
Gaze Completion 1 0.46 0.39 0.59
Gaze Completion 2 0.47 0.38 0.62
Gaze Completion 3 0.47 0.37 0.63
Gaze Completion 4 0.49 0.34 0.88

Table 4. Performance ablation for different prediction lengths.
Smaller windows yield higher precision but lower recall. The best
F1 score is achieved when predicting 4 frames into the future.
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Figure 2. Length of prediction.

However, this is offset by a reduction in precision, leading
to more false positives.

B.3. Chosen thresholds and sensitivity
We report F1 scores obtained at each method’s optimal
thresholds, which we’ll report in the paper. Figure 2 shows
how the F1 score of our best method (Unsupervised - Ours,
Table 2 of main paper) changes when varying the threshold.
Performance is stable for a range of threshold values.

B.4. Qualitative Results and Failure Cases
Figure 3 illustrates the performance of various baselines and
the proposed approach for both correct predictions in Cor-
rect Execution cases (a) and in Incorrect Execution cases
(b). The top row displays the ground truth, followed by
predictions from the GLC method, our proposed “Channel”
approach, and, at the bottom, the ”Gaze Frame Correla-
tion” approach. The last four columns display the predicted
heatmap, where red peaks symbolize the 2D gaze predicted
points.

Figure 3a focuses on correct predictions related to Cor-
rect Execution. The first row shows the actual gaze co-
ordinates. Notably, in the second row corresponding to
GLC, the predicted heatmaps exhibit inconsistencies, with
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(b) Correct prediction of Mistake Action.

Figure 3. Qualitative examples. The first four columns represent the inputs (with the input gaze 2D points highlighted in orange). The
latter four columns show the predicted outputs in the form of heatmaps.



varying peaks across consecutive frames. In contrast, our
proposed method leverages temporal information to pro-
duce temporally consistent predictions. The “Channel” ap-
proach demonstrates better consistency than GLC, while the
“Gaze Frame Correlation” method generates more defined
heatmaps with fewer, more localized peaks around the gaze
region. In this case, a Correct Execution is identified based
on the small gap between the ground truth and the predicted
gaze trajectory.

Figure 3b highlights predictions related to Incorrect Exe-
cution. Here, our approach’s gaze predictions diverge from
the ground truth, effectively flagging mistakes in action ex-
ecution.
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