
Fish-Vista: A Multi-Purpose Dataset for Understanding & Identification of
Traits from Images

Supplementary Material

Appendix

A. Code and Dataset
We provide the dataset, along with instructions to down-
load the images and metadata files in the following pub-
lic HuggingFace repository: https://huggingface.
co/datasets/imageomics/fish-vista. All nec-
essary code is provided in the following GitHub reposi-
tory: https://github.com/Imageomics/Fish-
Vista

B. Licensing Information
The source images in our dataset come with various li-
censes, mostly within the Creative Commons family. We
provide license and citation information, including the
source institution for each image, in our metadata CSV files,
which is available in our HuggingFace repository. Addi-
tionally, we attribute each image to the original FishAIR
URL from which it was downloaded.

A small subset of our images (approximately 1k) from
IDigBio are licensed under CC-BY-ND, which prohibits
us from distributing processed versions of these images.
Therefore, we do not publish these ⇡ 1, 000 images in the
repository. Instead, we provide the URLs for download-
ing the original images and a processing script that can be
applied to obtain the processed versions we use. Detailed
instructions are provided in the HuggingFace repository.

Our dataset is licensed under CC-BY-NC 4.0. However,
as mentioned earlier, individual images within our dataset
have different licenses, which are specified in our metadata
CSV files. We provide the licenses of the original sources
so that anyone using our dataset can adhere to the licensing
requirements of the individual images.

C. Further Details of Data Processing Pipeline
In this section, we provide further details of the data pro-
cessing pipeline that we use to obtain the images in Fish-
Vista.

C.1. Examples of Raw Museum Images
As mentioned in Section 3.3, the raw images obtained from
the FishAIR repository exhibit a range of noisy artifacts.
We observe that images of museum specimens predomi-
nantly include rulers and tags (Figure 8, Raw Image). Some
images contain radiographic images (Figure 9, first row),

while others include hand-written notes with no fish images
(Figure 9, second row).

C.2. Quality Metadata-based Filtering (Step 2)
In this step, we leverage quality metadata provided in CSV
files by Fish-AIR, containing manually annotated informa-
tion about the image quality of museum fish specimens. The
metadata include the following fields (among others):
• allPartsVisible: A boolean variable indicating whether all

parts of the fish specimen are visible or not.
• partsMissing: A boolean indicating whether any parts of

the specimen are missing or not.
• specimenView: A categorical variable specifying the view

of the specimen (e.g., ‘top view’, ‘bottom view’, ‘side
view’, ‘complicated view’).
At the time of this study, quality metadata were available

for 29,075 GLIN images and 1,435 iDigBio images used
in our dataset. No quality metadata were available for the
Morphbank images.

We filtered out images based on the following criteria:
1. Images where allPartsVisible is False (see Figure 7, top

row).
2. Images where partsMissing is True (see Figure 7, middle

row). For example, the first image shows a specimen
missing its head, and the second image is missing its tail.

3. Images labeled with a specimenView of ‘complicated
view’. Manual inspection revealed that these images do
not adequately display the visual traits that we need to
analyze (see Figure 7, bottom row).
As a result of this filtering process, we discarded 4,467

images from GLIN and 301 images from iDigBio.

C.3. Detecting and Cropping Fish Bounding Boxes
(Step 4)

We use Grounding DINO to detect and extract tight bound-
ing boxes around fish specimens in the images. This step
ensures that images without any fish specimens are ex-
cluded. Additionally, this process removes undesired visual
elements, such as rulers and tags, which could otherwise
introduce noise and detract machine learning models from
focusing on the visual traits of the specimens. Additionally,
museum images often feature multiple fishes within a single
frame. To facilitate the study of visual traits, it is essential to
ensure that each image contains only a single fish specimen.
By detecting and cropping individual fishes, we achieve this
objective, resulting in a dataset of individual fish images.

https://huggingface.co/datasets/imageomics/fish-vista
https://huggingface.co/datasets/imageomics/fish-vista
https://github.com/Imageomics/Fish-Vista
https://github.com/Imageomics/Fish-Vista


Figure 7. Examples of images filtered during the metadata filtering
step of the processing pipeline.

Grounding DINO implementation details: Grounding
DINO uses a textual prompt to detect bounding boxes in
an image. For our use case, we find that using the prompt
“fish” results in good detection of fish specimens from mu-
seum images. A box threshold of 0.4 is set for initial detec-
tion, but only bounding boxes with a confidence score of 0.5
or higher are retained. We avoid setting a higher confidence
threshold to minimize exclusion of valid fish images.

How good is Grounding DINO on detecting fish from
museum images? In order to validate the use of Grounding
DINO, we manually inspected ⇡ 500 randomly chosen im-
ages and observed no inaccuracies in bounding box detec-
tion. We show some examples in Figure 8, second column.
For quantitative evaluation, we obtained 311 GLIN museum
fish images from [13], which contains manually annotated
bounding boxes of fishes. We obtained an mIOU of 90.1%,
which shows that our bounding boxes are tight.

Following the detection process, we discard 2,062 im-
ages where no fish specimens were detected. Figure 9
shows a few examples of the discarded images. Since indi-
vidual images may contain multiple fishes, our cropping ap-
proach results in the addition of 12,320 bounding boxes to
the dataset, corresponding to individual fishes. To maintain
a minimum quality standard, we further filter out bounding
boxes with height and width smaller than 224 pixels, ensur-
ing that very low-resolution images are excluded from our
dataset. This step results in the removal of 422 bounding
boxes from the dataset.

C.4. Removing Background using SAM (Step 5)
Why do we remove backgrounds? Museum collection im-
ages often feature artificial backgrounds, which can intro-
duce unintended biases into trained models. For instance,
if a particular species is consistently associated with a black

Raw Image Cropped Background 
removed

Figure 8. Examples of raw images from Fish-AIR (first column),
crops generated by Grounding DINO (middle column) and back-
ground removed images by SAM (last column)

background, while other species lack such backgrounds, the
classifier may learn to distinguish backgrounds rather than
focusing on the visual traits of the specimens. To mitigate
this bias and create a controlled experimental environment,
we remove backgrounds from all images.

We use the Segment Anything Model (SAM) to remove
backgrounds from the fish images. Specifically, we use the
bounding boxes from Step 4 (Grounding DINO) as prompts
to SAM to detect foregrounds from images. We then replace
the backgrounds with white color, while cropping into the
segmented fish. We use default hyperparameters suggested
in the SAM repository and the ViT-H SAM model.

Background removal using SAM also serves as a filter-
ing step in our pipeline, operating in two key ways. First,
SAM may detect no foreground in an image. In such cases,
we discard those images. Second, we apply an explicit fil-
tering condition: if SAM detects more than one foreground
component, the image is discarded. This strict condition ad-
dresses two issues. Multiple detected components may in-
dicate the presence of undesired elements, such as rulers or



Figure 9. Examples of noisy images that are discarded by the fish
detection step of Grounding DINO.

tags, that are either on or in close proximity to the fish body,
and therefore falls within the bounding box. Alternatively,
it may indicate that the fish specimen is broken or discon-
nected, suggesting deformation that we aim to exclude from
the dataset.

This filtering step removes approximately 12,000 im-
ages, resulting in a final dataset of 100,300 images spanning
10,681 species.

How good is SAM on segmenting whole fishes and
the background? In order to validate the use of SAM,
we manually inspected ⇡ 500 randomly chosen images and
observed no inaccuracies in the background removal. We
show some examples in Figure 8, third column. For quanti-
tative evaluation, we utilized manual segmentation annota-
tions for 492 whole fish images sourced from GLIN, pro-
vided by [13]. Using these annotations as ground truth,
SAM achieved an mIoU of 90.8%, demonstrating its capa-
bility to accurately segment fish specimens. These results
confirm the suitability of SAM for background removal in
our dataset.

D. Manual Filtering of Species
After completing the data processing steps detailed in Sec-
tion 3.3 and Appendix C, we obtain complete fish images
free from noisy artifacts and with uniform backgrounds.

However, further filtering is required to remove images that
may not adequately exhibit visual traits. This issue can arise
for several reasons, including when fish specimens are pho-
tographed in views where traits are obscured or when spec-
imens are deformed due to prolonged preservation in mu-
seum conditions.

To address this, we perform a manual inspection of the
remaining images. Our inspection follows a rule-of-thumb:
an image is deemed low quality if any of the key traits, such
as the eye, tail, or head, are not visible, or if fewer than
two fins are visible. Examples of filtered images from this
process are shown in Figure 10. These examples clearly
demonstrate the absence of visual traits, justifying their re-
moval to maintain dataset quality.

Given the labor-intensive nature of manual inspection,
filtering every image in the dataset is infeasible. Instead,
we randomly sample 15% of images per species for manual
inspection. If more than half of the sampled images for a
species meet the criteria for being filtered out, we infer that
most images of that species are of low quality and discard
the entire species from the dataset. We chose 15% to match
the proportion that would later be allocated for test sets. We
set a minimum threshold of 7 images per species for discard
decisions, to ensure we observe adequate samples from very
small classes (species with images  50). This means, we
look at increasingly higher proportions of images for very
minority classes. This is because noise in these classes can
have greater adverse effects on training and evaluation.

We discover that this approach only discards species
with fewer images per species, which are more prone to
containing a significant proportion of low-quality images.
In total, we discard 420 species, comprising a total of 4,886
images, during this manual filtering step. Also, this filtering
is applied only to obtain the classification and identification
datasets but not the segmentation dataset, as the segmenta-
tion dataset is entirely manually annotated.

Why does filtering entire species make sense for the
classification and identification datasets? For species
classification, retaining species with predominantly low-
quality images would not be ideal, since we would be train-
ing and evaluating models on noisy images. Recall that
to create the identification dataset, images are mapped to
species-level labels. Species with mostly poor-quality im-
ages lacking visible traits would therefore result in invalid
mappings – that is, we would be mapping presence of traits
to images which do not exhibit any visual trait. Species-
level filtering ensures our classification and identification
dataset remains focused on high-quality data for these tasks.

While some low-quality images may still remain in the
dataset, we expect that the majority of images in our dataset
are of good quality that can be used for training machine
learning models. To guarantee clean evaluation, every im-
age in the test sets are manually inspected. Noisy images



Figure 10. Examples of images that do not demonstrate visual
traits. We consider such images to be of bad quality during our
manual inspection and filtering.

are discarded during this process, as detailed in Appendix
F, ensuring that the test sets remain free of noisy images
and do not negatively impact the evaluation of model per-
formance.

E. Manual Annotation for Segmentation

12 annotators used the Computer Vision Annotation Tool
(CVAT) [2] to annotate nine traits in a subset of processed
images: eye, head, barbel, dorsal fin, adipose fin, pectoral
fin, pelvic fin, anal fin, and caudal fin. We provide addi-
tional examples of the annotations in Figure 11. These traits
were chosen due to their well-defined physical boundaries
which can be accurately segmented using CVAT.

We prioritized images containing specimens oriented in
lateral view over specimens in top or bottom-view for con-
sistency and to maximize the visibility of traits. Images of
damaged or degraded specimens were excluded (similar to
those shown in Figure 10), as were images with poor resolu-
tion. We also omitted images of specimens that are difficult
to photograph in standard lateral view, such as elongated
species or those prone to curling when preserved (e.g., eels).

Figure 11. Examples of annotated visual trait segmentations for
the nine different traits from the Segmentation dataset.

F. Additional Dataset Details
F.1. Classification Dataset
To create the classification dataset, we further filter the
dataset by retaining only species with at least 4 images per
species for the classification dataset. This ensures that the
classification dataset includes a minimum of 2 images for
training, 1 for testing, and 1 for validation for every species.
Following this step, and the manual test-set filtering step
described below, the final classification dataset consists of
56,360 images spanning 1,758 species.

In order to create the train, test, and validation split, we
perform a stratified split of 75%, 15% and 10% respectively.
We set a minimum threshold of 1 image in the test set and
1 image in the validation set for cases where the splitting
would result in no images being set out for the test and vali-
dation splits. This results in a training set of 39,800 images,
a validation set of 6,779 images and an initial test set of
10,830 images.

Manual filtering of the initial test set: In order to en-
sure that the models are tested on a perfectly clean dataset,
we manually inspect every image in the initial test set to ob-
tain our final test set for classification. We follow the same
manual inspection guidelines as discussed in Appendix D.
We discard 1,049 images that do not have traits visible, ei-
ther owing to deformity, or because of the view of the im-
age. This is less than 10% of the initial test set images,
which demonstrates the effectiveness of our prior data pro-
cessing steps. We obtain a final test set of 9,781 images.

Statistics across the four categorizations of species:
majority, neutral, minority and ultra-rare, along with an
overview of the long-tailed distribution in Figure 3 - Species
Classification.

F.2. Identification Dataset
The trait identification dataset is designed to achieve three
key objectives: detecting the presence or absence of four
traits—adipose fin, pelvic fin, barbel, and multiple dorsal
fins; evaluating model performance on out-of-distribution
(OOD) test sets; and assessing whether traits can be local-
ized in images using coarse-grained weak labels by predict-
ing their presence/absence. The initial dataset, consisting
of 52,982 images from 682 species, is divided into four
splits: training, validation, in-species test, and leave-out-
species test sets. We reserve 51 species (1,935 images) for
the leave-out test set, ensuring sufficient variation in the
presence and absence of all four traits for robust OOD eval-
uation. The remaining images are split into training (75%),
in-species test (15%), and validation (10%) sets stratified
by the unique combination of the four traits. The training
set comprises 38,038 images from 628 species, the valida-
tion set includes 5,238 images from 451 species, and the
in-species test set contains 7,771 images from 450 species,



all of which overlap with the species in the training set to
provide an in-distribution evaluation set. To ensure high-
quality evaluation, we manually inspect the test sets to re-
move noisy or low-quality samples, following the same pro-
cess used for the classification dataset.

We construct a manual-annotation dataset comprising
presence/absence annotations for four traits across 1,281
images spanning 1,075 species. This dataset is derived from
a subset of the manually annotated segmentation dataset,
carefully curated to ensure no overlap with the other four
identification datasets and no species overlap with the train-
ing set. For this dataset, the presence/absence of traits such
as the adipose fin, pelvic fin, and barbel is straightforward
to infer from segmentation annotations, as the presence of
corresponding pixel labels directly indicates the traits’ pres-
ence. However, this approach cannot be applied to images
with multiple dorsal fins, as all dorsal fins share the same
pixel label in the segmentation annotations. To address this,
we used help from expert biologists in our team to manually
inspect these images and annotate the presence/absence of
multiple dorsal fins.

Incorporating the manual-annotation dataset brings the
total identification dataset to 54,263 images spanning 1,754
species. The key statistics of the identification dataset are
illustrated in Figure 3 - Trait Identification. In the figure,
the presence percentage for each trait represents the propor-
tion of images in which the trait is present, highlighting the
highly imbalanced distribution of each trait in our dataset.

Remark: Note that the number of species in each
data split does not necessarily sum up to the total num-
ber of species in FV-Id. This is because there would be
overlapping species across the training, validation, and in-
species test sets. While the leave-out-species and manual-
annotation sets are constructed to have no species overlap
with the training set, they still share some species with the
validation set. This means that a subset of the species in the
validation set are not in the training set. This setup enables
hyperparameter tuning and model selection based on per-
formance on both seen and unseen species in the validation
set.

F.3. Segmentation Dataset

Head Eye Dorsal Pectoral Pelvic Anal Caudal Adipose Barbel
Presence (%) 100 100 100 100 95.91 100 100 10.67 7.58
Mean Area (%) 6.97 0.72 4.57 2.43 0.96 2.47 5.04 0.38 0.42

Table 5. The proportion of images where each of the nine traits are
present, and the average area they occupy per image

For the segmentation dataset, we create a split of 70%-
25%-5% split for train-test-validation sets respectively,
stratified by the unique combination of the nine traits. We
obtain a training set of 4,312 images, test set of 1,504 im-
ages and validation set of 316 images. Key statistics are

shown in Figure 3. In the figure, the ‘Presence in Images
(%)’ indicates the proportion of images for which a trait is
present, and the ‘Mean Area (%)’ indicates the average pro-
portion of pixels that a trait covers. The complete table of
Presence (%) and Mean Area (%) for all 9 traits are pro-
vided in Table 5. We can see the high imbalance associated
with the trait presences, as well as the very small area cov-
ered by some of the traits, particularly the eye, barbel and
the adipose fin.

G. Experiment Details
We provide implementation details, including training de-
tails, for all our experiments in this section. Note that, we
report results for all trained models on the best validation
checkpoints.

G.1. Classification Experiments
Hyperparameters: For all the CNN-based backbone mod-
els reported in Table 2, we use hyperparameters follow-
ing suggestions of training routines for imbalanced image
datasets provided in [7] and [16]. We use the SGD opti-
mizer with a base learning rate of 0.1, with a linear warmup
of the learning rate for 5 epochs. We also employ cosine an-
nealing decay for the learning rate. We use a weight decay
parameter of 2e-4. We train all CNN-based models for 100
epochs, since we observe that these models converge well
within this limit. We employ early stopping with a patience
of 10 epochs that goes into effect after training for the first
50 epochs.

For all the transformer-based (ViT) backbone models,
we use hyper-parameter suggestions from [18]. We use
Adam optimizer with base learning rate of 3e-4, and a lin-
ear warm-up of the learning rate for the first 50 epochs.
We set the weight decay parameter to be 0.1. We train the
transformer-based models for 150 epochs, since we observe
that these models take longer to converge than the CNN-
based models. For all classification experiments, we use a
batch size of 128. We also employ cosine annealing decay
for the learning rate. All of our models are pretrained on the
ImageNet-1k [3] dataset, unless explicitly tagged with 22k,
in which case we start with ImageNet-22k [3] pretrained
weights. We employ early stopping with a patience of 10
epochs that goes into effect after training for the first 100
epochs.

Image augmentations: For species classification and
trait identification, it is essential to maintain the aspect ra-
tio of the various parts of the input images. Therefore, we
pad all images along the shorter edge to make both sides
of the image the same length (square padding). We then
resize the image to the required resolution while maintain-
ing the aspect-ratio according to the model that we use. We
resize the image to the resolution expected by each model,
which is 224 ⇥ 224 pixels in most cases. We calculate the



mean and standard deviation of our training set and normal-
ize every input image accordingly. During training, we ran-
domly augment the images with the following operations:
rotations between 0 and 180 degrees, adjusting the sharp-
ness, changing the contrast, and performing horizontal and
vertical flips.

Loss function: For CNN models, ViT models and lin-
ear probing of foundation models, we use the standard cross
entropy (CE) loss with the objective of predicting the cor-
rect class through empirical risk minimization.

G.1.1. Details of Zero-Shot Classification Experiments
For CLIP and Bio-CLIP Zero-Shot (ZS), we use textual
prompt ensembling using the same set of 80 prompts pro-
vided by OpenAI in the original CLIP paper [14].

G.1.2. Details of Fine-grained Categorization Methods
We experiment using two FGVC methods – INTR and
TransFG (see Table 2). We use their default settings of
hyper-parameters and follow the implementations as pro-
vided in the original repositories.

G.1.3. Details of Imbalanced Methods
Class-balanced re-weighting (CB-RW): CB-RW [1] is
a re-weighting strategy that assigns weights to each class
based on the inverse of the effective number of samples in
the class. The effective number is defined as a function of
the number of samples in class k, denoted as Nk, and a hy-
perparameter �. The weight for class k is given by:

wk =
1� �Nk

1� �
(1)

For our experiments, we set � = 0.9999. This weighting
scheme ensures that underrepresented classes receive higher
weights, addressing the class imbalance problem.

Focal Loss: Focal loss [8] down-weights the loss for
well-classified examples, thus reducing their impact during
training. By applying a modulation factor to the standard
cross-entropy loss, focal loss ensures the model concen-
trates on difficult, underrepresented classes. In our imple-
mentation, we use � = 2 for the loss modulation factor.

G.2. Identification Experiments
Model Details of Figure 6: EffNetV2 refers to
EfficientNet-v2 [20], CNext-B refers to ConvNext-Base
[11], Swin-B refers to Swin-Base [10], MaxViT refers to
MaxViT-T [22]; Q2L-R34 refers to Query2Label [9] with
Resnet-34 backbone, trained with a single attention head
(SH); Q2L-Swin refers to Query2Label with Swin Trans-
former backbone, trained with 4 attention heads (that is,
multiple heads or MH).

Hyperparameters: For all the backbone models used
in trait identification, we use the Adam optimizer with
weight decay of 0.1. We train every model for 150 epochs.

Model F1 Major
Acc.

Neutral
Acc.

Minor
Acc.

Ultra-R
Acc.

VGG-19[17] 49.7 93.5 83.0 74.2 45.9
Resnet-34 [5] 35.6 89.9 68.4 60.9 30.7
Inception-v3 [19] 40.2 90.0 77.7 67.7 34.5
ResNext-50 [25] 44.4 91.4 78.3 69.8 39.1
MobileNet-v3 [6] 40.1 86.0 74.4 65.5 34.0
RegNet-y [15] 43.7 89.8 77.4 68.5 38.5
EfficientNet-v2 [20] 34.3 89.0 75.0 62.3 28.5
ConvNext-B [11] 49.5 89.6 81.8 73.1 44.9
ViT-B-16 [4] 48.3 88.7 82.3 73.3 43.4
ViT-B-32 [4] 45.2 86.9 75.8 66.6 41.8
DEiT-distilled-s [21] 46.2 91.7 76.8 72.3 40.8
Swin-B-22k [10] 55.1 92.6 86.2 79.6 50.4
CVT-13 [24] 49.3 92.0 83.3 73.5 44.7
MobileViT-xs [12] 49.0 92.2 85.9 74.1 43.7
MobileViT-v2 [12] 42.7 91.4 80.8 66.8 37.6
MaxViT-t [22] 57.8 94.4 86.7 81.4 53.9
PVT-v2 [23] 51.0 92.0 83.4 75.7 45.8

Table 6. Comparison of the classification performance (in %)
of different mainstream CNN-based and vision transformer-based
backbones. Results are color-coded as Best , Second best ,
Worst , Second worst .

For CNN-based models, we use a maximum learning rate of
1e-4 with a linear warm-up for 5 epochs. For transformer-
based models, we use a maximum learning rate of 3e-4 with
a linear warm-up of 50 epochs. We use cosine annealing
learning rate decay. We train with a batch size of 128.

For the Query2Label [9] models, we use the default set
of hyperparameters used in the original paper. We use the
Adam optimizer with weight decay coefficient of 1e-2. We
use a learning rate of 1e-4 with cosine annealing. In the
Query2Label transformer, we use 1 encoder layer and 2 de-
coder layers. We vary the number of heads between 1 and
4. We use Resnet34 and SWIN-base backbones, pretrained
on the ImageNet-22k dataset

Image augmentations: We use the same augmenta-
tions for the identification experiments that we use for clas-
sification, described in Section G.1.

Loss function: Binary cross entropy loss is used to train
the models, since we have a multi-label classification ob-
jective. In order to account for the imbalance demonstrated
by each trait, we use the weighted binary cross entropy
loss for all models except Query2Label. For each trait, the
loss for minority labels is scaled by a factor �scale, where
�scale = Nmajor

Nminor
and Nmajor, Nminor are the number of

majority labels and minority labels for each trait, respec-
tively. Query2Label uses the assymmetric loss as part of
their implementation, and we use the default implementa-
tion presented in the original paper.



G.2.1. Attention Maps from Query2Label
We visualize the attention maps shown in Figure 5 follow-
ing the method described in the original Query2Label paper.

For multi-head models, we take the mean of the multiple
attention maps. The attention maps are interpolated to the
original image size. This allows us to compute the mIoU
with the ground-truth segmentation maps on the manual-
annotation test set, as shown in Table 3. Since the model
is trained on squared images, we ensure that the attention
maps are interpolated according to the resized input image.

G.3. Segmentation Experiments
Hyperparameters: For the semantic segmentation meth-
ods listed in the first section of Table 4 (PSPNet to Semantic
FPN), we use the implementation provided in the Segmen-
tation Models Pytorch (SMP) library. For our experiments,
we used the Adam optimizer with a learning rate of 2e-4.
The learning rate was scheduled using a cosine annealing
learning rate scheduler, with a minimum learning rate of 1e-
5. The models were trained with a batch size of 32 for up to
100 epochs. Early stopping was employed with a patience
of 10 epochs.

For the instance segmentation methods listed in the sec-
ond section of Table 4 (Mask2Former and YOLOv8), we
used a learning rate of 2.5e-4 and a batch size of 4.

Augmentations: We used the albumentations library in
pytorch for training data augmentations. The augmentation
pipeline includes horizontal flipping with a probability of
0.5 and shift-scale-rotate transformations that allow scaling
up to 50%, rotating within a limit of 0 degrees, and shifting
up to 10%, applied with a probability of 1. The images were
resized to a maximum size of 320 pixels while maintaining
the aspect ratio, and padding was added as needed to ensure
a size of 320 ⇥ 320 pixels. Padding used a constant border
mode with a white background. Gaussian noise was added
to images with a probability of 0.2, and perspective trans-
formations were applied with a probability of 0.5. To en-
hance brightness and contrast variations, one of the follow-
ing augmentations was randomly applied with a probabil-
ity of 0.9: CLAHE (Contrast Limited Adaptive Histogram
Equalization), random brightness and contrast adjustment,
or gamma adjustment. The pipeline also included blurring
effects, where one of the following was applied with a prob-
ability of 0.9: sharpening, Gaussian blur, or motion blur,
each with a blur limit of 3. Furthermore, to introduce color
variations, one of the following was randomly applied with
a probability of 0.9: hue-saturation adjustment or additional
brightness and contrast adjustment. This comprehensive
augmentation strategy was adapted from default recommen-
dations in the SMP library.

Loss Functions: We trained all models in Table 4 (ex-
cept YOLOv8) with cross-entropy loss and dice loss for
segmentation, weighed equally. We used the default loss

implementation for the YOLOv8 model.

G.3.1. Molmo-SAM Implementation Details
For the zero-shot segmentation method combining Molmo
and SAM, we provide Molmo with images in the FV-
Segmentation test set and prompt it using the text: “Point
me to the < trait > of the fish.” The placeholder < trait >
is replaced with one of the nine trait names listed in Figure
11. For the caudal fin, < trait > is replaced with “caudal
fin or tail” to account for the non-scientific terminology, as
the caudal fin is commonly referred to as the tail.

Molmo outputs numeric points corresponding to the
traits, if detected. Using these points, we prompt SAM-v2
to generate nine binary segmentation masks for each im-
age, where each mask corresponds to one of the nine traits.
These binary masks are then merged into a single segmen-
tation map labeled with the different traits. In cases where
traits overlap, we resolve the conflict using a predefined pri-
ority order (low to high): Head, Eye, Dorsal Fin, Pectoral
Fin, Pelvic Fin, Anal Fin, Caudal Fin, Adipose Fin, Barbel.
Traits with higher priority are assigned overlapping pixels.
This priority order is determined based on the physical ar-
rangement of traits and their segmentation difficulty. For
instance, Eye is prioritized over Head since the eye is al-
ways within the head, while Adipose Fin and Barbel are
given the highest priority as they are the most challenging
traits to segment.

In our implementation, we use the ‘allenai/Molmo-7B-
D-0924’ variant of Molmo. We enable greedy decoding (we
set temperature to 0), to prevent varying outputs. We use
the ‘sam2.1 hiera large’ variant of SAM-v2, and use default
configuration provided in the SAM-v2 repository.

Exploring alternative methods to enhance the perfor-
mance of the Molmo+SAM pipeline is an interesting direc-
tion for future work but is beyond the scope of this paper.

H. Additional Experiments and Results
H.1. Classification
In addition to the classification results provided in the main
paper in Table 2, we provide a comprehensive evaluation of
mainstream vision backbones in Table 6. We use the same
implementation details described in Appendix G.1.

H.2. Identification
H.2.1. Comprehensive Benchmarking
A comprehensive benchmarking was conducted for trait
identification, evaluating each model on the three evaluation
sets: the in-species test set (Table 8), the leave-out-species
test set (Table 9), and the manual-annotation test set (Ta-
ble 10). In terms of the metrics, we report the mean aver-
age precision (mAP), the average precision for each of the
four traits, the macro-averaged F1 score at a 0.5 threshold,



Probability

Figure 12. Confusion matrix for the five semantic segmentation models, with cells of interest highlighted in red frames.

and the macro-averaged F1 score at the optimal threshold.
For each model, the optimal threshold is determined from
the precision-recall curve of the validation set. Adip, Pelv,
Barb and Dors refer to each of the 4 individual traits for trait
identification – adipose, pelvic, barbel and multiple dorsal
fins. We use the same implementation details described in
Appendix G.2.

We observe similar results as the main paper – models
obtain high performance on the in-species test set, with pro-
gressively lower performance on the leave-out-species test
set and the manual-annotation test set. Computing the opti-
mal threshold for F1 score generally improves performance
over the default 0.5 threshold, which is expected given the
imbalanced nature of our traits. We observe that all variants
of the Query2Label model – Resnet34 (R34) and SWIN
backbones, each trained with either a single head (SH) or
four heads (Multiple Head, MH) – consistently outperforms
other models. As mentioned in the main paper, all models
face significant challenges in achieving decent performance
on the manual-annotation set. This underscores the diffi-
culty state-of-the-art models encounter in robustly general-

izing to predict the fine-grained visual traits.

H.2.2. Query2Label Loss Ablation
As mentioned in Appendix H.2, the Query2Label results
that we present are with the original implementation with
asymmetric loss (ASL), while all other backbones are
trained with the weighted BCE loss. For comparison, we
train a Q2L-SWIN-MH model (Query2Label with SWIN
backbone and 4 attention heads) with the weighted BCE
(W-BCE) loss, and evaluate it on the manual-annotation
dataset for FV-Id, shown in Table 7. We observe that W-
BCE performs slightly worse than ASL loss (58.22%vs
58.27% mAP), but Q2L still outperforms other backbones
from Table 10.

H.3. Segmentation
We present the confusion matrices for the five semantic seg-
mentation models used in our experiments in Figure 12,
with cells of interest highlighted in red. A consistent pat-
tern emerges across all models: the adipose fin, when mis-
classified, is often segmented as background, likely due to
its rarity in the dataset. In other instances, it is misclassified



Loss mAP F1 @ optimal threshold
Adip Pelv Barb Dors

ASL 58.27 73.52 71.46 77.68 75.53
W-BCE 58.22 72.27 70.34 76.06 78.50

Table 7. Comparison of ASL vs W-BCE loss for Query2Label.
We observe slight performance difference between the two losses.

as the dorsal fin, which can be attributed to their close spa-
tial proximity, and their subtle difference in appearance, as
shown in Figure 11.

Similarly, the barbel is frequently misclassified as back-
ground or as the head. This behavior can be explained by
the barbel’s rarity, its typical appearance over the head re-
gion, and its small area in images. On the other hand, the
eye, which is also small and located on the head, is misclas-
sified much less than the barbel. This can be attributed to the
fact that the eye is consistently present in our dataset (i.e., it
is not a rare trait). However, the eye is often segmented as
part of the head due to their close association.

This analysis highlights key challenges in segmentation:
small and rare traits are more likely to be segmented as
background, traits that are spatially adjacent, or overlaid on
other traits, or appear similar to other traits are prone to be-
ing misclassified as the other trait. These findings highlight
the need for segmentation methods to handle rare, small,
spatially nearby and fine-grained traits effectively.



Model Average Precision F1@0.5 F1@optimal threshold
mAP Adip Pelv Barb Dors Adip Pelv Barb Dors Adip Pelv Barb Dors

VGG-19 87.06 95.09 61.85 96.21 95.07 92.61 68.28 94.62 93.17 93.69 80.85 94.7 93.28
ResNet-18 87.85 96.56 65.96 95.16 93.73 91.26 78.95 93.7 91.16 94.47 79.01 94.07 92.18
ResNet-34 91.77 95.71 80.73 95.53 95.1 94.42 72.4 94.64 92.96 94.41 88.84 94.72 92.78
Inception-v3 77.0 93.08 52.4 86.03 76.47 87.45 77.67 88.93 83.53 93.16 78.48 88.69 84.95
ResNext-50 91.44 98.53 74.64 97.03 95.54 96.07 86.56 96.32 94.09 96.9 85.23 96.45 94.99
MobileNet-v3 90.49 96.34 73.79 96.33 95.51 94.38 83.73 95.19 93.69 94.58 84.26 95.14 94.73
RegNet-Y 89.51 95.54 73.06 95.45 94.0 94.62 82.28 94.86 94.12 94.69 81.6 94.77 94.04
EfficientNet-v2 95.96 99.7 86.41 98.43 99.3 98.13 90.69 97.29 98.04 98.48 92.22 97.23 98.28
ConvNext-Base 97.46 99.54 92.33 98.67 99.32 98.62 92.31 98.28 98.46 98.62 95.93 98.19 98.45

ViT-B-16 86.95 92.93 67.7 93.29 93.89 91.51 66.75 92.41 92.57 91.71 81.23 92.14 92.68
ViT-B-32 81.44 89.79 59.81 89.18 86.97 88.13 64.63 88.48 86.57 90.08 79.07 89.46 87.91
DEiT-distilled 93.74 97.61 82.85 97.02 97.48 95.5 76.11 94.93 96.12 95.72 86.88 95.76 96.47
SWIN-B 92.02 96.64 76.98 97.35 97.11 94.99 82.12 95.69 95.46 95.28 86.78 95.76 95.76
SWIN-B-22k 95.21 98.05 86.94 97.55 98.28 95.95 86.37 96.07 96.47 96.12 91.29 96.13 96.62
CVT-13 83.61 93.22 49.56 96.21 95.43 92.92 71.72 94.47 94.08 93.37 78.1 94.47 94.61
Mobile-ViT-xs 75.12 90.57 25.66 93.78 90.5 91.94 65.17 93.84 91.21 92.7 66.94 94.25 90.96
Mobile-ViT-v2 86.3 95.21 62.3 95.29 92.4 92.81 70.38 94.72 91.66 93.28 78.25 94.38 92.32
MaxViT-t 95.49 98.33 86.44 98.88 98.3 96.87 87.71 97.91 97.77 97.06 91.99 97.74 97.68
PVT-v2 96.48 98.84 90.85 97.75 98.49 97.61 84.15 96.94 97.58 97.62 91.63 97.15 97.92

Q2L (R34 SH) [9] 97.78 99.47 93.91 98.47 99.26 97.65 97.36 97.35 98.27 97.9 95.1 97.73 98.45
Q2L (R34 MH) 97.22 99.4 91.92 98.38 99.17 98.05 96.65 97.43 98.39 98.36 96.03 97.61 98.62
Q2L (Swin SH) 98.32 99.81 94.94 99.0 99.53 99.09 97.36 97.82 99.19 98.93 95.66 98.03 99.06
Q2L (Swin MH) 98.32 99.82 94.91 98.94 99.61 98.73 98.04 98.38 99.02 98.93 96.82 98.35 99.23

Table 8. Trait identification results on mainstream visual models using the in-species test set. Results are color-coded as Best ,
Second best , Worst , Second worst .

Model Average Precision F1@0.5 F1@optimal threshold
mAP Adip Pelv Barb Dors Adip Pelv Barb Dors Adip Pelv Barb Dors

VGG-19 49.97 68.42 43.36 65.47 22.62 79.93 57.35 79.55 65.03 81.18 67.52 81.05 63.5
ResNet-18 49.27 81.46 23.89 80.68 11.06 79.16 66.84 83.77 54.31 85.16 64.85 84.0 55.42
ResNet-34 52.14 79.8 37.24 75.45 16.09 86.67 58.07 82.87 55.76 86.67 69.73 82.87 55.73
Inception-v3 28.93 67.01 6.33 27.27 15.13 73.56 55.49 63.14 57.37 76.53 49.61 61.65 61.51
ResNext-50 53.0 91.16 1.42 72.86 46.56 93.28 48.29 81.23 73.4 82.29 48.71 80.91 72.85
MobileNet-v3 53.36 89.93 21.18 60.63 41.68 89.58 60.13 77.15 71.08 90.16 61.08 74.65 73.2
RegNet-y 34.67 67.04 12.23 45.17 14.24 80.03 54.01 69.27 57.17 75.4 56.86 71.16 56.88
EfficientNet-v2 83.86 95.45 88.1 83.97 67.91 95.15 84.59 86.76 79.31 92.76 87.07 82.62 79.43
ConvNext-Base 79.6 96.87 73.18 85.14 63.21 96.24 84.32 88.3 74.24 96.24 77.98 88.3 78.71

ViT-B-16 47.27 58.54 40.13 67.6 22.82 69.78 66.66 70.2 62.41 69.27 65.89 76.86 61.87
ViT-B-32 35.29 47.21 14.49 50.29 29.17 69.3 56.96 69.79 64.87 62.59 56.1 64.72 63.66
DEiT-distilled 61.74 65.19 43.15 82.55 56.07 80.14 63.26 85.71 76.08 73.5 70.35 86.78 75.87
SWIN-B 60.22 81.1 38.66 79.96 41.15 87.02 71.63 86.15 69.24 82.11 59.69 86.87 68.83
SWIN-B-22k 68.18 89.0 59.52 80.03 44.18 92.04 75.96 85.03 57.88 91.5 74.77 83.88 58.25
CVT-13 28.94 55.04 1.84 48.15 10.73 77.28 48.23 72.95 52.77 69.61 47.13 72.95 54.55
Mobile-ViT-xs 34.23 55.65 13.99 58.08 9.2 77.36 56.12 75.46 52.03 76.35 54.39 75.17 52.67
Mobile-ViT-v2 33.76 52.62 3.74 64.05 14.63 73.59 46.78 79.37 54.76 70.19 51.98 77.4 53.75
MaxViT-t 75.42 87.18 81.3 76.03 57.15 88.61 69.04 79.62 75.05 88.21 83.98 84.27 75.63
PVT-v2 60.72 83.91 9.26 89.3 60.42 80.42 56.72 88.41 78.74 79.24 49.62 90.49 76.61

Q2L (R34 SH) 79.86 92.93 67.54 89.14 69.82 88.54 85.56 86.14 70.02 92.79 88.51 90.09 78.74
Q2L (R34 MH) 74.64 92.5 50.37 85.21 70.47 91.04 78.74 86.84 70.83 93.48 78.74 89.0 82.07
Q2L (SWIN SH) 88.41 98.61 93.06 97.3 64.65 97.84 92.75 96.08 74.5 97.42 93.98 95.22 75.43
Q2L (SWIN MH) 88.23 99.17 96.39 97.62 59.76 97.49 99.04 95.84 73.98 97.84 98.12 95.84 76.69

Table 9. Trait identification results on the leave-out-species test set. Results are color-coded as Best , Second best , Worst ,
Second worst .



Model Average Precision F1@0.5 F1@optimal threshold
mAP Adip Pelv Barb Dors Adip Pelv Barb Dors Adip Pelv Barb Dors

VGG-19 38.48 49.36 23.15 35.79 45.61 64.89 58.48 62.53 64.09 70.12 59.19 66.48 65.87
ResNet-18 39.61 46.24 18.42 42.02 51.74 58.86 57.21 68.76 59.42 69.07 57.69 70.89 66.68
ResNet-34 45.53 58.78 25.66 38.66 59.02 75.17 61.16 66.45 70.64 74.81 56.85 66.9 68.02
Inception-v3 30.07 48.07 14.22 22.66 35.32 58.86 49.07 58.26 53.36 72.76 48.09 60.23 55.66
ResNext-50 43.25 57.02 19.56 36.62 59.79 70.12 52.37 63.25 62.53 73.58 52.37 62.67 68.89
MobileNet-v3 41.99 46.18 27.96 30.44 63.36 69.87 57.63 61.03 70.68 70.5 56.75 61.72 71.85
RegNet-y 38.1 43.45 23.14 31.93 53.87 66.74 54.87 64.19 66.65 70.37 52.25 66.74 66.56
EfficientNet-v2 55.36 63.96 30.75 55.08 71.66 74.03 60.84 73.13 75.42 76.35 58.07 75.28 78.06
ConvNext-Base 53.96 61.27 38.19 47.55 68.84 73.39 69.59 66.03 78.68 73.5 67.52 68.63 77.02
ViT-B-16 37.63 37.69 26.92 36.72 49.2 64.72 58.76 66.35 66.57 65.74 60.47 66.61 67.57
ViT-B-32 33.7 33.43 24.34 30.47 46.54 58.11 60.19 60.33 63.91 62.28 56.96 63.14 65.76
DEiT-distilled 40.69 40.36 32.82 29.5 60.08 61.85 64.24 58.77 69.82 67.34 61.97 64.11 70.63
SWIN-B 44.68 40.67 35.6 36.36 66.07 64.16 62.32 67.73 74.7 68.0 60.16 68.14 76.93
SWIN-B-22k 51.53 55.55 32.2 50.54 67.82 72.51 65.99 73.78 75.45 72.21 63.0 71.46 74.37
CVT-13 34.76 35.87 24.28 30.76 48.13 58.53 53.3 59.69 63.48 61.84 57.93 59.69 67.91
Mobile-ViT-xs 30.6 39.08 13.7 23.99 45.62 65.27 54.82 62.68 64.64 69.42 52.95 61.58 67.46
Mobile-ViT-v2 34.89 44.5 19.84 28.45 46.78 67.61 57.85 63.99 63.17 68.33 54.95 65.63 65.83
MaxViT-t 49.67 50.34 33.71 51.55 63.07 69.21 65.67 74.5 72.52 68.97 63.33 72.03 71.53
PVT-v2 46.42 44.53 27.7 47.75 65.71 62.68 62.42 71.54 73.56 64.08 56.96 71.45 75.24

Q2L (R34 SH) 55.84 61.67 36.8 50.44 74.43 76.16 67.35 73.61 80.07 75.23 69.25 72.76 79.63
Q2L (R34 MH) 53.98 56.6 40.04 45.91 73.36 75.42 67.54 72.57 78.9 70.93 67.88 72.18 77.8
Q2L (SWIN SH) 59.39 59.18 41.65 63.46 73.28 75.74 70.83 79.16 78.69 74.8 70.54 77.78 78.44
Q2L (SWIN MH) 58.27 57.97 42.71 60.56 71.83 74.55 70.83 77.89 78.18 73.52 71.46 77.68 75.53

Table 10. Trait identification results on the challenging manual-annotation test set. All models struggle to identify traits on the diverse
set of species contained within the manual-annotation set. Results are color-coded as Best , Second best , Worst , Second worst .
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