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Supplementary Material

1. Outline
We provide additional results and insights for our method.
First, we visualize histogram contributions for an image
in Figure 4. Through relevant experiments, we expand on
the choice of parameters α, β and σ in Section 2. We
analyze how kernel widths affect runtime in Section 3. We
provide additional qualitative and quantitative comparisons
along with corresponding error plots in Figures 7, 8 and 6.
Implementation details are provided in Section 4. We also
include reference code for a 2D task in code.zip, with
the main implementation available in model.py.

2. Choosing kernel parameters
The parameter β defines the tonal scale, σ defines the image
resolution, and α defines the spatial extent over which
histograms are integrated. Since β implicitly defines the
bin-width as 1/β, it represents the effective tonal resolution.
Intuitively, the number of bins limits the number of modes
in the distribution. Since our goal is to preserve these modes
at coarser scales, we choose β appropriately. In the limit
as β → 0, the full intensity distribution is maintained. For
all of our experiments, we find that the maximum number
of local histogram modes is 6, and choosing β ≥ 1/32 (i.e.
32 bins) works reasonably well. The parameter α is critical
for long-range motion of image features, as it defines the
extent of gradient support. Intuitively, low α values can
be used for more local alignment in image space, while
high values enable longer-range alignment. For complex
problems involving both local and global alignment, we use
multiple scales.

Ablating σ and α Since β does not extend gradient
support, using it alone without blurring histogram
contributions via α is functionally equivalent to matching
images at a stationary resolution. Figure 2 illustrates this
with an optimization problem where using β in isolation
leads to poor local minima.

Texture Recovery We recover the texture of a planar
surface starting from a random initialization. Contrary to
what one might expect, high β values do not degrade the
quality of recovery on this task. The low tonal resolution
resulting from high β values does not affect the resolution of
the underlying texture. As shown in Figure ??, the choice of
β has a marginal effect on recovery quality. We demonstrate
the advantages of using α space compared to σ space on this
task in Figure 1.
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Figure 1. Texture Recovery. Starting from a random initialization,
we recover a reference texture using β = 1/8. We compare our
histogram-space blurring approach (α = 5, σ = 0) with standard
σ-space blurring (α = 0, σ = 5). The σ-space matching yields
suboptimal results since it only measures errors in the means of the
distributions.
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Figure 2. Ablation on α, σ. The parameter β alone does not
influence the support of RGB gradients. When used in isolation
without the α and σ spaces, the optimization converges to poor
local minima. We demonstrate this by attempting to recover disk
positions from random initializations using only β scale space.

3. Runtime
We measure the effect of the LOI parameters on wall-time
for feedforward operations. Please refer to Figure 3.

4. Implementation Details
Differentiable Vectorization For this set of experiments,
we use 128 × 128 images and recover the positions of n
disks, making it an n× 2 dimensional optimization problem.
The disk positions are initialized by sampling from a normal
distribution N (0, 1). We compute image gradients using
diffvg [3] and implement our method in PyTorch. We use
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Figure 3. Runtime Analysis. We measure the effects of kernel-width parameters (α, β, and σ) on the total runtime of computing LOIs.
The runtime increases linearly with kernel width, with histogram-space blurring (α kernels) being the slowest operation.

a learning rate of 0.1 and the Adam optimizer with default
parameters. For the kernel parameters, we set β = 0.125,
α = [1, 5, 15] and σ = [1, 5, 15, 45]. The parameter β
also determines the histogram bin width, resulting in 8
bins for these experiments. Each disk has a width of 4
pixels. To prevent disk overlap, we resolve collisions at
each optimization step. We provide error plots and visual
comparisons for randomly selected runs in Figure 8.

Differentiable Path Tracing For path tracing experiments,
we render images at 256 × 192 resolution using Mitsuba
3 [2] with 64 samples per pixel for computing gradients. We
use the prb reparam integrator [4] with a maximum path
length of 4. For optimization, we use Adam with default
parameters and a learning rate of 0.01 for all parameters,
except for light position parameters, for which we use a
learning rate of 1. We provide additional visual comparisons
and convergence plots beyond those in the main manuscript
in Figure 7.

Differentiable Rasterization We evaluate our method
on the rasterization benchmark from [6]. All images are
rendered at 128× 128 resolution, using the same rendering
and optimization parameters as [6]. Visual comparisons
between our method and standard scale space matching are
shown in Figure 6. We use five random initializations for

each task and report average error metrics in Table 2 in the
main manuscript.
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Figure 4. Histogram visualization. We visualize the histogram contributions across the three color channels at different α kernel widths.
While standard Gaussian Pyramids only preserve the mean of each distribution, our method preserves their modes.
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Figure 6. Visual comparisons on rasterization benchmark.
We show visual comparisons on three tasks from the rasterization
benchmark in [6].
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Figure 7. More comparisons on Differentiable Path Tracing. We show additional comparisons with GP [1] and MS-SSIM [5] along with
Error plots (Image MSE vs. Iterations) for each scene in Figure 7 in the main manuscript.
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Figure 8. 2D Comparisons. We show convergence plots (Image MSE vs. Iterations) and optimized results for the 2D benchmark task of
optimizing disk positions (Table 1 and Figure 6 in the main manuscript).
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