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1. Network Structure

Our model structure mainly follows [8], [13] and [2]. Tak-
ing [8] as an example, the network includes an image en-
coder, a text encoder, and a multimodal fusion encoder. The
image encoder is a 12-layer transformer with a VIT struc-
ture, with initialized weights derived from pre-training on
the ImageNet-1k [4] dataset. The text encoder and fusion
encoder use pre-trained BERT-base [5] networks, which
consist of 12 layers of transformers, with each encoder us-
ing 6 layers. To obtain more robust training with noisy web
datasets, we maintain the momentum version for each en-
coder, i.e., θ′t = αθ′t−1 + (1 − α)θt, where θt and θ′t are
the parameters of the main model EI and the momentum
modal E′

I , and α is the momentum parameter ranging be-
tween [0, 1]. Given a pair of images and text (I, T ), fol-
lowing [6], we first perform two data augmentations on the
image to obtain two different views of the image. Then,
we encode the two augmented images with the original
model and momentum model separately as positive pairs.
The image tokens are obtained after the image patches are
linearly mapped and position encoded. To capture global
features, we also concatenate CLS tokens before visual to-
kens. We encode I and I ′ with EI and E′

I respectively
to obtain image embeddings, V = {Vcls, V1, V2, ..., Vm}
and V ′ = {V ′

cls, V
′
1 , V

′
2 , ..., V

′
m}. For the text, we tokenize

and embed text following BERT[5], and we can similarly
obtain text embeddings W = {Wcls,W1,W2, ...,Wn} and
W ′ = {W ′

cls,W
′
1,W

′
2, ...,W

′
n}. Subsequently, we concate-

nate visual and textual embeddings and feed them together
into the fusion encoder for feature fusion, thereby learning
the joint modal representations.

2. Pre-training Datasets

The details of the pre-training datasets about image-text
pairs are shown in below Tab.1.

COCO VG SBU CC3M
#image 113K 100K 860K 2.95M
#text 567K 769K 860K 2.95M

Table 1. Statistics of the pre-training datasets.

Method TR IR
ALBEF 73.1 56.8
ALBEF+OM 73.3 56.4
ALBEF+Geo 76.2 59.2
MAFA 78.0 61.2
MAFA+OM 77.8 61.1
MAFA+Geo 79.3 62.5

Table 2. Comparison with Oblique manifold.

3. Pre-training Tasks
Multimodal learning requires elaborate pre-training tasks,
and commonly used pre-training tasks include Masked
Language Modeling(MLM) [5], Image-Text Matching
(ITM) [8], Image-Text Contrastive (ITC) [11], Word Patch
Alignment (WPA) [3], and so on. We leverage MLM, ITM,
and ITC for multimodal pre-training following [3, 7, 8].

4. Extra Experiments
We also compare our method with the Oblique manifold
(OM) [1]. We conduct the experiments on the image-text
retrieval task with the COCO dataset and fine-tune setting.
We display the R@1 accuracy for text retrieval (TR) and
image retrieval (IR), as shown in Tab.2.

5. Proofs
5.1. Proof for Theorem 1
For the graph where the cluster centers represent the ver-
tices of the graph and the adjacent relationship between
these cluster centers represents the edges between vertices,
we can know this graph possesses N vertices with minimum
degree κ (cluster neighbors).

We define all the vertices set as V , and then we construct
a random subset X of V (X ⊂ V ). Each sample in X is
taken from V with a probability of p. Then the expectation
scale of X is,

E(|X|) = Np (1)

We regard the subset X as the candidate for connected com-
ponents S. We can thus define the random set YX , which
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represents the samples in V − X that do not have an adja-
cent sample in X , that is, for sample v ∈ YX , we can not
find a sample x ∈ X that v is subordinate to x. This can
also be interpreted as for v ∈ YX , any adjacent samples of
v not in X , so

P (v ∈ YX) = P (v and its adjacent samples not in X)

= (1− p)1+d(v)

≤ (1− p)1+κ

(2)

Then we can obtain,

E(|YX |) ≤ N(1− p)1+κ (3)

It is apparent that X ∪ YX can be served as a connected
component, and the number of connected components can
be represented as,

E(|X ∪ YX |) ≤ E(|X|+ |YX |) ≤ E(|X|) + E(|YX |)
= Np+N(1− p)1+κ ≤ Np+Ne−p(1+κ)

(4)

Since we want to find the minimal number of connected
components, which means we want to find the minimal
value of Np + Ne−p(1+κ). We can then obtain that when
p = ln(κ+1)

κ+1 , the expectation get the minimum value,

N [1 + ln(κ+ 1)]

κ+ 1
(5)

Therefore we can get

|S| ≤ N [1 + ln(κ+ 1)]

κ+ 1
, where κ = F(ξ). (6)

5.2. Proof for Theorem 2
The lower bound is obvious. Here we only prove the upper
bound.

We can model the adjacency relationship between cluster
centers as a bipartite graph with N points on both sides. The
problem can be transformed into a 0 − 1 matrix of M ∈
RN×N , where there is no all 1 sub-matrix of M0 ∈ RA×A,
and at this time, how many element 1 can there be in the
matrix at most.

We count the following structures. We define that the left
and right point sets of the bipartite graph are V1 and V2, and
then assume that the structure p is selecting a point u from
V1 with a adjacent samples in V2. Let’s start with point u in
V1, and the selection methods of a samples in V2 is Ca

d(u),
then the total selections are

∑
u∈V1

Ca
d(u) = |S|. We can

also start with a samples in V2. And once we determine a
point in V2, there are at most a− 1 u in V1, otherwise there
will be an all 1 sub-matrix of M0 ∈ RA×A. We can thus
obtain, ∑

u∈V1

Ca
d(u) ≤ Ca

N (a− 1) (7)

Following Jensen Inequality [9], f(x) = Ca
x is a convex

function, then,∑
u∈V1

1

N
Ca

d(u) ≥ Ca
1
N

∑
u∈V1

d(u) = Ca
|E|
a

(8)

So,

NCa
|E|
a

≤
∑
u∈V1

Ca
d(u) ≤ Ca

N (a− 1)

=
N(N − 1)...(N − a+ 1)

a!
(a− 1)

(9)

Retraction is conducted at both sides and then,

N
( |E|

N − a+ 1)a

a!
< NCa

|E|
a

<
Na

a!
(a− 1) (10)

After simplification, we can obtain,

E(N) ≤ (a− 1)
1
aN2− 1

a + (a− 1)N (11)

The proof of another upper bound is presented as fol-
lows,

Let the number of cluster centers be N and for every
point xi, the number of neighboring points is d(xi). Sup-
pose a initial set Cπ = ∅, for all points, we introduce a
random permutation O : x1, x2, x3, ..., xn. For a certain
permutation, if all points in front of xi are xi’s neighboring
points, we put xi into Cπ . Finally, all point pairs in Cπ are
neighboring points.

The probability of a certain point in Cπ is p = 1
N−d(xi)

,
then the mathematical expectation of the size of C is,

|Cπ| =
∑
xi

1

N − d(xi)
(12)

Suppose the size of maximal cluster is ω(D), we apply Pi-
geonhole Principle [12] and get:

ω(D) ≥
∑
xi

1

N − d(xi)
(13)

What we need to satisfy is,

a ≥ ω(G) ≥
∑
vi

1

N − d(vi)
(14)

According to Cauchy Inequality [10],

a
∑
vi

(N − d(vi)) ≥
∑
vi

1

N − d(vi)

∑
vi

(N − d(vi)) ≥ N2

(15)
So,

a(N2 − 2|E|) ≥ N2 (16)

We can thus obtain,

|E| ≤ N2

2
(1− 1

a− 1
) (17)
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