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Figure 1. An illustration of our light stage.

Figure 2. Examples of captured views using 36 frontal cameras.

1. Video Demonstration
We encourage readers to view the provided supplemental
video, which contains video results and comparisons, for a

Input Clip Image Enc. Ours Target

Figure 3. Visual comparisons for the ablation study on lighting
control module. Compared to our design, the common used CLIP-
based image encoding [10, 19, 24] cannot accurately capture the
lighting intensity and directions in an HDR map and thus fails to
enable precise lighting control. In contrast, our approach can pro-
duce high-quality lighting effects that follow the given HDR map.

more comprehensive illustration of the relighting quality of
Lux Post Facto.

2. Additional Implementation Details

Reference Frame Encoding. Lux Post Facto is jointly
trained with HDR-based relighting and reference-based ap-
pearance copy. To condition the model on a reference
frame, we adopt a simple CNN encoder that encodes the im-
age (512 × 512 × 3) into a feature map of 32 × 32 × 768.
We reshape it as a list of image embeddings (i.e. 1024 ×
768) and append them after the lighting embeddings. When
one conditioning (e.g. HDR-based) is used, we deactivate
the other conditioning (e.g. reference-based) by replacing
their embeddings with “null” embeddings.

https://www.eyelinestudios.com/research/luxpostfacto.html
https://www.eyelinestudios.com/research/luxpostfacto.html
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Figure 4. Visual comparisons with video relighting methods on in-the-wild portrait videos. We compare our method with NVPR [21] and
SwitchLight [5].

Image Delighting Model. We use an image delighting
model to create paired training samples for the motion-rich
dataset Dm. We implement this model based on Stable Dif-
fusion (SD) [11]. The model is extended to be spatially
conditioned on an input image by adding additional input
channels to the first convolution layer of the denoising U-
Net, similar to our video model, and the text embeddings
are replaced by “null” embeddings. We initialize the model
weight from the pre-trained SD 1.5 [14], and supervisely
train the model on our static OLAT dataset. We optimize the

model towards v-prediction objectives [13] with a learning
rate of 1e-5. The training stops after 200K steps.

More Training Details. To support autoregressive infer-
ence for long sequence, we randomly sample T ∈ [0, 4]
and replace the first T input frames with ground truth dur-
ing training. This allows the model to learn to generate
subsequent frames based on previous predictions, therefore
enhances temporal consistency across prediction windows.
In our implementation, we sample T = 0 with p = 0.5
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Figure 5. Visual comparisons on in-the-wild image relighting. We compare our method with PN-Relighting [18] and Holo-Relighting [7].
Both approaches are designed for 512 × 512 face crops. Therefore, we report results on this region-of-interest for all methods for a fair
comparison.
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Figure 6. Additional visual evaluation on temporal consistency.

Figure 7. Relighting results under a rotating HDR map.

and other values equally with p = 0.125. Our method
is implemented using PyTorch and trained on 8 NVIDIA
A100 GPUs. During testing, results are generated using
DDIM [15] sampler with 30 diffusion steps.

Light Stage and Rendering Details. We capture our
static OLAT data using a light stage [3]. Specifically, the
stage is configured as a cylindrical rig, equipped with 110
programmable LED lights and 75 Z-CAM e2 cinema cam-
eras. We provide an illustration of the stage in Fig. 1. We
use 36 frontal cameras for this project. Examples of the cap-
tured views are provided in Fig. 2. The stage has a diameter
2.7m and is 2.5m tall. The OLAT images are captured at
4K resolution. We cropped the upper body region and re-
size it to a resolution of 512× 768 for training. During ren-
dering, we randomly pair each OLAT sequence with mul-
tiple HDR maps and obtain lit images using image-based
relighting [3, 12]. To diversify the illuminations, we aug-
ment an HDR map by randomly rotating it. Following [7],
we further add the original OLAT images into our rendered

Table 1. Quantitative evaluation on temporal consistency.

Methods NIQE↓ LE↓ LI↓ LPIPS (temp.)↓ WE↓
w/o Spatio-temporal 5.471 0.5542 0.0796 0.0450 0.0013
w/o Hybrid dataset. 6.639 0.5233 0.0387 0.0081 0.0001
Ours 5.462 0.4978 0.0350 0.0073 0.0001

dataset.
The use and collection of the OLAT data were reviewed

and approved by the Institutional Review Board (IRB) and
informed consent was obtained from all participants.

3. More Results for Ablation Study
We provide visual results for the ablation study on lighting
control in Fig. 3. As shown, commonly used CLIP-based
image encoding [10, 19, 24] cannot enable precise light-
ing control, whereas our lighting conditioning approach can
produce high-fidelity lighting effects that follow the given
HDR map.

We also provide additional evaluation on temporal con-
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Figure 8. Visual comparisons to background-based relighting
method IC-Light [22]. IC-Light produces results with artifacts and
struggles with synthesizing precise lighting effects.

Input Cai et al. SwitchLight Ours Reference
Figure 9. Visual comparisons to Cai et al. [2] and SwitchLight [5]
on the INSTA dataset [27].

sistency. We conduct ablation study on two key designs:
(1) the conditional video diffusion model (spatio-temporal
design), which is trained using (2) hybrid dataset training
strategy. These two designs together enable temporally con-
sistent and high-quality relighting. We report results in
Fig. 6 using a sequence of frames, and Tab. 1 using the im-
age quality metric NIQE [8] and temporal metrics lighting
error (LE), light instability (LI), LPIPS [23] between two
adjacent frames and warping error (WE). Without spatio-
temporal (i.e. video) design, the corresponding image diffu-
sion model produces flickering lighting effects (see shadows
on shoulder and cheek). With video modeling but without
hybrid dataset training, the resulting video model (solely
trained on OLAT simulated data Dl) produces temporally
smooth but blurry results.

4. Relighting under Rotating HDR Maps
To further demonstrate the effectiveness of the lighting con-
trol module, we report relighting results under a rotating

Table 2. Quantitative comparison with PN-Relighting and IC-
Light on our test set.

Methods LPIPS↓ NIQE↓ PSNR↑ SSIM↑
PN-Relighting [18] 0.2486 7.799 17.15 0.7373
IC-Light [22] 0.2519 6.996 16.12 0.7315
Ours 0.1158 5.653 24.62 0.8278

Table 3. Quantitative evaluation on INSTA dataset.
Methods NIQE↓ LE↓ LI↓ LPIPS (temporal)↓ WE↓
Cai et al. 6.582 0.6521 0.1495 0.0206 0.0002
SwitchLight 7.107 0.5987 0.0822 0.0128 0.0001
Ours 5.953 0.5239 0.0451 0.0092 0.0001

HDR map. As shown in Fig. 7, our method can faithfully
render lighting effects following the rotated HDR maps.

5. More Comparison Results

In Fig. 4, we provide more visual comparisons against video
relighting methods [5, 21] on in-the-wild portrait videos.
For NVPR [21], we acquire the results from the authors as
their code is not available. For SwitchLight [5], we obtain
their results by using their commercial application [1].

In Fig. 5, we provide additional comparisons with two
state-of-the-art face relighting method PN-Relighting [18]
and Holo-Relighting [7]. PN-Relighting also uses the con-
cept of data mixing but for a different goal (i.e. improv-
ing image relighting quality and albedo prediction) and via
a different self-supervision approach. In contrast, we use
data mixing for learning temporal consistent video relight-
ing. The results for Holo-Relighting [7] are acquired from
their authors as the source code is not available. Both ap-
proaches are designed for 512× 512 face crops. Therefore,
we report results on this region-of-interest for all methods
for a fair comparison. Our methods generate more faith-
ful relighting results, and the produced lighting effects are
more consistent to the lighting effects in reference images.

In Fig. 8, we provide additional comparisons with
background-based relighting method IC-Light [22] for im-
age relighting. Compared to our method, IC-Light produces
artifacts and fails to render precise lighting effects specified
in the target HDR map. In Tab. 2, we report quantitative
comparison with PN-Relighting [18] and IC-Light [22] on
our test set.

In Fig. 9 and Tab. 3, we additionally compare our method
with Cai et al. [2] and SwitchLight [5] on the INSTA
dataset [27]. Note that INSTA dataset is designed for avatar
reconstruction rather than evaluating video relighting per-
formance. It may not best reflect the relighting capability
as 1. it only contains a small number of subjects with lim-
ited input lighting and lack of large motions; 2. the videos
are compressed, resulting in smoothed facial details in the
input frames. On this dataset, our method achieves the best
results both in terms of relighting quality and temporal con-
sistency.



6. Limitations and Future Work
Lux Post Facto is not without limitations. First, although
our model can robustly handle most accessories, we found a
few challenging cases where accessories, such as the deco-
rative hairpiece shown in Fig. 5 (row 4, column 4), partially
occlude the face. In such scenario, the model may not per-
fectly preserve the accessory’s details. This is because our
training dataset lacks examples of faces with such occlu-
sions, making it difficult for the model to handle this unseen
case effectively. Second, as our model learns to synthesize
lighting from the OLAT renderings, it can only generate
lighting effects that can be represented by the light stage.
Similar to previous methods [5–7, 9, 17], some challeng-
ing lighting effects (e.g. foreign shadows) cannot be pro-
duced by our approach. Third, Lux Post Facto relies on
video diffusion models to generate relit videos. The iter-
ative nature of the diffusion process makes it challenging
to apply our method for real-time applications. Further im-
proving run-time efficiency might be a very interesting di-
rection for future work. Some possible solutions include
designing more efficient architectures [25] or exploring dis-
tillation techniques [16, 20] to reduce sampling steps. We
leave this direction for future work. Finally, due to GPU
memory constraint, we train our model at a resolution of
512 × 768. To support higher-resolution generation, one
possible way is to utilize an off-the-shelf super-resolution
model (e.g. [4, 26]) as a post-processing step. We leave
such exploration for future work.

7. Potential Negative Social Impacts
This method is designed to facilitate content creators
to create creative and compelling lighting in portrait
videos. However, we acknowledge its potential mis-
use, such as creating deepfakes or misleading videos.
Our work is developed to support positive and cre-
ative applications. To mitigate misuse of our relighting
method, we advocate for responsible usage, clear con-
tent labeling and implementing robust detection mecha-
nisms.
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