
PerLA : Perceptive 3D language assistant

Supplementary Material

A. Introduction
In this supplementary material, we begin by thoroughly de-
scribing the components of PerLA that are distinct from
the perspective scene encoder (Appendix B). Next, we
offer a more technical explanation of Hilbert-based seri-
alization and partitioning for point clouds, including de-
tailed algorithms and an analysis of computational effi-
ciency (Appendix C). Moreover, we provide the complete
list of datasets that are involved in model training and test-
ing (Appendix D). In addition, we include an extended anal-
ysis performed during the submission phase, and offer addi-
tional implementation details and deeper discussion of the
results (Appendix E). Finally, we present additional inter-
esting qualitative results of PerLA in comparison with state-
of-the-art competitors.

B. More Details of PerLA
In this section, we describe in detail additional components
in PerLA, including the off-the-shelf 3D encoder within
our perceptive scene encoder, the multimodal prompts in-
volved in the 3DLA interaction as well as their correspond-
ing prompt encoders, and the multimodal adapter that in-
tegrates both multimodal prompt and the 3D scene repre-
sentation to form query tokens that are interpretable by the
LLM. Lastly, we explain the next token prediction loss.

B.1. 3D encoder
We adopt the same 3D encoder architecture as in
LL3DA [9] to process the 3D point cloud. This 3D en-
coder first tokenizes the input into 2,048 point tokens, by
uniformly sampling across the input point cloud using a set-
abstraction layer [45]. The point tokens are then passed
through three cascaded transformer encoder blocks, em-
ploying masking radius of 0.16, 0.64, and 1.44, respectively.
To further refine the token representation, an additional set-
abstraction layer is introduced between the first two trans-
former blocks, downsampling the tokens to 1,024. The fi-
nal output of this 3D encoder is a feature matrix of shape
R1,024×256, where each of the point tokens is encoded as a
256-dimensional feature vector.

B.2. Multimodal prompts
Prompts in PerLA are multimodal and are designed to
simulate user-driven interactions within 3D environments.
Specifically, we consider both visual and textual prompts as
in prior work LL3DA [9]. The visual prompts involve vi-
sual cues coming from the 3D content, e.g., user clicks or

bounding boxes around objects, while the textual prompts
involve user instructions expressed in natural language for-
mat. Such multimodal prompts allow PerLA to interpret
and respond effectively to intuitive user inputs. In the fol-
lowing, we present how each type of prompts is encoded.
Scene-aware visual prompt encoder. The visual prompt
encoder aims to process visual prompts into representations
that are then easier to be processed by the LLM. In addition
to prior work which applies positional encoding followed by
an MLP layer to process the visual prompts (as described in
Eq. 3 of [9]), we further enhance this approach by augment-
ing the positional encoding with the detail-enriched global
scene representations F̂g , obtained by our perceptive scene
encoder. Therefore, the visual prompt encoder is more
aligned to the scene representation, helping to improve the
model performance as empirically proved in Tab. I.

Specifically, each user click is first normalized to a range
of [0, 1] based on the dimensions of the input 3D scene,
where pclick ∈ R3. We then encode pclick using 3D Fourier
positional embeddings, denoted as pos(pclick). The box an-
notation is represented by the ROI feature fbox ∈ Rd with
the center point pbox extracted by a pre-trained 3D object
detector [8]. We first merge the two types of visual prompts
with the scene representations regarding the neighborhood
points, and then we use an MLP to project the merged rep-
resentations as follows:

fcli = MLPcli

(
pos(pcli), h

({
f̂g
i | p

l
j ∈ N (pcli)

}))
,

fbox = MLPbox

(
fbox, h

({
f̂g
i | p

l
j ∈ N (pbox)

}))
,

where h(·) is max-pooling, and N (·) denotes the Kl/2
nearest neighbors.
Textual prompt encoder. Textual prompts provide task-
specific instructions to 3DLAs. For 3D dense captioning,
we instruct the model to perform one of two tasks: “de-
scribe” or “describe and localize” the object, while for 3D
question answering, we use textual instructions that ask the
model to either “answer” or “answer and localize the related
objects.” Specifically, we encode the input text prompt It
using a transformer architecture inspired by BLIP-2 [9, 31].
This transformer is initialized with a pre-trained BERT
model to handle word and positional embeddings, produc-
ing text representations Fe ∈ RT×de .

B.3. Multimodal adapter
Since the 3D and language representations reside in dis-
tinct latent spaces, the multimodal adapter (MMA) aims to
bridge the gap between outputs of frozen unimodals. MMA

aggregates such multimodal information with a fixed set
of 32 learnable query tokens. Specifically, we implement
MMA with a Q-Former architecture [31] with transformer
layers, featuring 12 attention heads per layer. In each layer,
these queries interact with the encoded visual prompts,
[fcli; fbox], and the textual instructions, It, through a shared
self-attention mechanism. Next, the learnable query tokens
and visual prompts interact with our detail-enriched scene
representation, F̂g , via cross-attention. The output of the
MMA is a set of 32 queries, denoted as Q ∈ R32×768, which
are then projected into the latent space of LLM through a
simple linear projector.

B.4. Next token prediction loss
We employ standard language modeling conditioned on the
text prompt It, visual prompt Iv , and point cloud P , to
train on a large text corpus O1,O2, · · · ,OT by performing
a next-token prediction task. The goal is to maximize the
probability of Oi+1 (the next token) conditioned on the se-
quence of prior tokens Oi:1 = Oi, · · · ,O1, It, Iv and P .
The learning objective, Lpred, minimizes the cross-entropy
loss as follows:

Lpred = −
∑
i

logPθ

(
Oi+1 | O1:i; It; Iv;P

)
, (8)

where θ represents the learnable parameters of PerLA.

C. Hilbert-based Serialization and Partition
We choose Hilbert-based serialization for partitioning

unordered point clouds for its efficiency and effectiveness in
handling large point clouds. While grid partitioning is faster
(O(N)), the Hilbert curve offers superior spatial coherence
and is computationally simpler than KD-trees or octrees,
making it particularly beneficial for tasks such as clustering
and spatial indexing (more details please refer [42]). Ad-
ditionally, computing point indices with Hilbert-based se-
rialization is inherently parallelizable, as each point can be
processed independently. Sorting and partitioning steps can
also benefit from such parallel algorithms.

In the following subsections, we describe the Hilbert-
based serialization process in detail, and provide analysis
on its computational complexity.

C.1. Algorithm details
We outline the steps for partitioning a point cloud using the
Hilbert curve, as detailed in Algorithm 1. This approach
leverages the locality-preserving properties of the Hilbert
curve to organize and group points into spatially consistent
parts. The key steps include: normalizing the point cloud to
fit within a unit cube, discretizing the unit cube into a grid,
calculating Hilbert indices (by converting grid indices to bi-
nary, applying Gray code transformation, and interleaving

Algorithm 1 Hilbert-based serialization and partition

Require: Point cloud P={pi∈R3|i=1, 2, . . . , N}, resolution d.
Ensure: Hilbert indicesH = {hi | i = 1, 2, . . . , N}.

1: Normalize the points: pi =
pi−pmin
pmax−pmin

, ∀pi ∈ P
2: Discretize the unit cube: pgrid

i = ⌊pi · 2d⌋ where 2d defines
the resolution of the grid.

3: Convert grid indices to binary: Represent each grid index
(x, y, z) with d bits.
t = (bt,d−1, bt,d−2, . . . , bt,0), t ∈ {x, y, z}

4: Transform to Gray code: Convert binary indices to Gray
code to ensure spatial locality: gi = bi ⊕ bi+1, for i =
0, . . . , d− 2

5: Interleave bits (see Algorithm 2): Interleave the Gray code
bits of x, y, and z to form a single integer hi:
hi = Interleave(gx, gy, gz)

6: Apply recursive rotations: Use the Hilbert curve recursive
structure to reorder the interleaved bits, ensuring continuity of
the curve.

7: Output the Hilbert index: Combine the reordered bits to
compute the Hilbert index hi for each point.

8: Sort by Hilbert index: Sort the points P based on their
Hilbert indicesH:
Psorted = Sort(P,H)

9: Partition the point cloud: Divide the sorted points into L
spatially coherent partitions: P1,P2, . . . ,PL, where each
partition contains approximately N/L points.

Algorithm 2 Interleaving bits, i.e., Interleave(·)
Require: Coordinates x, y, z ∈ N, each represented with d bits.
Ensure: Hilbert index h.

1: Initialize h← 0.
2: for i = 0 to d− 1 do
3: Extract the i-th bit from x, y, and z by bx,i = (x ≫

i)&1, by,i = (y ≫ i)&1, bz,i = (z ≫ i)&1.
4: Interleave the bits into h:

h← h|(bx,i≪(3i))|(by,i≪(3i+ 1)) | (bz,i≪(3i+ 2)).
5: end for
6: return h

bits), sorting the points based on their Hilbert indices, and
partitioning the point cloud accordingly.

C.2. Computation efficiency
We analyze the computational efficiency of Hilbert curve
partitioning in terms of both time and space complexity:
Time complexity is O(N · d + N logN) (dominated by
sorting for large N) and is influenced by the following key
factors: 1) Mapping Points to Hilbert Curve: normalizing,
binary conversion, Gray code conversion, and bit interleav-
ing take O(N · d), where N is the number of points and
d is the resolution in bits. 2) Sorting: sorting the Hilbert
indices requires O(N logN) using efficient sorting algo-
rithms. 3) Partitioning: dividing the sorted points into k
parts is O(N).

Figure E. Visualization of two qualitative examples demonstrating scene partitioning using Hilbert-based serialization. The images illus-
trate the stepwise refinement of point cloud partitions, with each row corresponding to a different scene example. From left to right, the
partitions (highlighted with brownish color) evolve as the serialization method groups spatially adjacent points.

Table G. Computational analysis among 3D-LLM [21],
LL3DA [9], and PerLA.

Cost 3D-LLM [21] LL3DA [9] PerLA

Hard Drive (GB)↓ 74563.49 5.92 41.58
Time per Scene (s)↓ 48203.14 6.24 13.79

Space complexity is O(N · d), determined by the follow-
ing factors: 1) storing points and Hilbert indices requires
O(N), and 2) binary representations and intermediate data
take O(N · d).

Tab. G compares the total hard drive usage and pro-
cessing time of different methods. For 3D-LLM [21],
multi-view representations are extracted from ScanNet
videos every 20 frames, following the protocol outlined
in LL3DA [9]. The results demonstrate the efficiency of
PerLA, achieving a good balance between storage require-
ments and processing time, significantly outperforming 3D-
LLM and comparable to LL3DA in computational cost.
Hilbert-based nearest-neighbor search. Our k-NN search
search is constrained by geometric segments. We first seri-
alize the union of the global and local point clouds Pg∪P l,
using a Hilbert curve ordering. This ordering maps each
point’s multi-dimensional coordinates to a one-dimensional
Hilbert bit d, thereby preserving spatial locality. Next,
we apply geometric partitioning [27] on the original point
clouds to generate geometric labels Yg and Y l. For each
label, we compute its center (i.e., the mean coordinate of all
points in that label) and incorporate this center information
into the serialized index as high-order bits via bit shifting.
In practice, this is achieved by computing a combined met-
ric for each point:

combined = label offset× label + d,

where label offset is chosen to be larger than the max-
imum possible Hilbert distance. Once the union is sorted
per batch using this combined index, we perform an approx-
imate k-NN search.

C.3. Qualitative examples with partitioning.

In Fig. E, we provide two qualitative examples of point
cloud partitioning, achieved through Hilbert-based serial-
ization. This approach groups spatially adjacent points into
partitions that preserve locality, effectively encoding spa-
tial relationships within the 3D scenes. The top row depicts
the progressive partitioning of the first scene, while the bot-
tom row shows the same process for a second scene. From
left to right, the images demonstrate how the Hilbert-based
method refines partitions, capturing the hierarchical struc-
ture of the point cloud. These examples highlight the abil-
ity of Hilbert-based serialization to produce coherent parti-
tions that align with the underlying spatial organization of
the scenes.

D. Dataset Details

During the training phase, we leverage the training set of
the ScanNet portion from the 3DLLM dataset [21]. Addi-
tionally, we incorporate data from complementary datasets,
including ScanQA [2], ScanRefer [6], and Nr3D [1]. The
dataset details are provided below.
3D-LLM dataset [21] comprises: i) 1,033 textual descrip-
tions across 517 scenes, ii) 1,864 lines of embodied task
planning spanning 510 scenes, and iii) 2,955 lines of multi-
turn embodied dialogues across 517 scenes.
ScanQA dataset [2] is a 3D question-answering bench-
mark built on top of the ScanRefer [6] dataset, designed
to evaluate the ability of models to understand 3D scenes
through natural language queries. The dataset contains
6,857 unique questions paired with 30,769 answers span-
ning 806 reconstructed indoor environments from Scan-
Net [14]. Each question focuses on objects within the scene,
addressing a variety of topics such as object attributes, spa-
tial relationships, and scene semantics. On average, each
scene contains 8.5 questions, encouraging models to rea-
son about object-level details and contextual relationships
within complex 3D environments.

ScanRefer dataset [6] is a 3D language grounding bench-
mark built on the ScanNet [14] dataset, consisting of 1,613
RGB-D scans across 806 unique indoor environments. The
dataset provides natural language descriptions for objects in
reconstructed 3D scenes, with a total of 51,583 descriptions
covering 800 ScanNet scenes. Each object is annotated
with an average of 4.67 descriptions, ensuring comprehen-
sive linguistic diversity. On average, each scene contains
13.81 objects and 64.48 descriptions, spanning over 250
types of common indoor objects. Among these, 41,034 de-
scriptions explicitly mention object attributes such as color,
shape, size, and spatial relationships, making the dataset a
rich resource for evaluating fine-grained language ground-
ing in complex 3D environments.

Nr3D dataset [1] is a benchmark for 3D object localiza-
tion tasks in natural language, built on the ScanNet [14]
dataset. It contains 41,503 unique natural language descrip-
tions referring to 5,578 objects across 707 ScanNet scenes.
Each description is designed to unambiguously identify a
target object in the context of its surrounding scene, incor-
porating spatial relationships and object attributes such as
color, shape, and size. On average, each object is associated
with 7.4 descriptions, providing comprehensive linguistic
diversity. The dataset focuses on common indoor objects,
making it suitable for evaluating fine-grained understand-
ing of object attributes and spatial reasoning in 3D scenes.

E. Additional analysis
E.1. Details with increasing tokens (LL3DA†)
In the main paper (Tab. 3), we introduce a variant of
LL3DA†, which combines both global and local informa-
tion by leveraging query tokens generated from local and
global regions. LL3DA† serves as a baseline of enrich-
ing global context with local details by extending the num-
ber of query tokens. LL3DA† first extracts 3D represen-
tations from different partitions of the scene. It then ap-
plies Farthest Point Sampling (FPS) to select 1,024 points,
along with their corresponding point-level representations,
from the union of these partitions. These sampled repre-
sentations are processed through the multimodal adapter
to produce 32 local tokens. Then, we can generate an
additional 32 tokens (global tokens) from the point cloud
of the entire scene. We finally obtain a total of 64 to-
kens by concatenating such local and global tokens and
processed through a self-attention layer, i.e., Q64×768 =
fatt

(
cat[MMA(Fg, It),MMA(F l, It)]

)
(where the num-

ber of tokens increases from 32 to 64). The self-attention
mechanism enables interaction and information exchange
between the 64 tokens, enhancing the representation of both
global and local representations. We evaluate the perfor-
mance of LL3DA† on the ScanQA validation dataset, com-

Table H. Ablation study on the impact of the increasing the number
tokens on the ScanQA [2] validation dataset.

Method C↑ B4↑ M↑ R↑

LL3DA (repr.) 74.37 13.50 15.09 36.31
LL3DA† 74.54 12.89 15.11 36.96
PerLA 78.13 14.49 17.44 39.60

Table I. Ablation study on the impact of the scene-aware prompt
encoder on the ScanQA [2] validation dataset.

Method C↑ B4↑ M↑ R↑

without scene-aware 78.01 14.46 17.32 39.46
with scene-aware 78.13 14.49 17.44 39.60

paring it with the original LL3DA and our PerLA. As shown
in Tab. H, increasing the number of tokens enables LL3DA†

to achieve a modest performance gain over the reproduced
LL3DA (repr.), as expected. However, its effectiveness re-
mains limited compared to PerLA. This is because PerLA
is specifically designed to capture both global context and
local details during the scene encoding phase. Furthermore,
it is trained with carefully crafted loss functions that en-
sure stable and efficient learning. Our findings align with
Idefics2 [28]. Idefics2 shows that reducing the number of
visual tokens through attention-based pooling significantly
enhances computational efficiency during training and in-
ference while improving performance on downstream tasks.

E.2. Scene-aware visual prompt encoder
In the visual prompt encoder, we integrate the detail-
enriched scene representations to enhance the prompt rep-
resentations for clicks and object bounding boxes as ex-
plained in Appendix B. To evaluate the efficiency of the
scene-aware visual prompt encoder, we conducted experi-
ments on the ScanQA [2] validation dataset. As shown in
Tab. I, by integrating scene representations with the visual
prompts, while not being a major contributor to the perfor-
mance, it brings consistent marginal improvements across
all evaluation metrics.

E.3. Increase number of tokens
To evaluate the impact of the number of learnable query to-
kens, we experimented with various numbers of learnable
query tokens, from 32 to 128, in the Q-Former (different
from LL3DA†). We trained each model from scratch on the
ScanQA training set and evaluated its performance on the
validation set for both LL3DA and PerLA. We observed that
increasing the number of tokens to 96 and 128 led to loss di-
vergence (to infinity) in both LL3DA and PerLA. To address
this instability, we incorporated mirror descent-based regu-
larization [58]. Tab. J presents the results. Both LL3DA and
PerLA achieve better performance with increasing query to-
kens, where the performance gain tends to saturate from

Table J. Ablation study on the impact of the numbers of learnable query tokens on the ScanQA [2] validation dataset.
Method 32 64 96 128

Metric C↑ B4↑ M↑ R↑ C↑ B4↑ M↑ R↑ C↑ B4↑ M↑ R↑ C↑ B4↑ M↑ R↑

LL3DA 73.2 12.8 14.9 36.0 73.7 13.6 15.2 35.5 74.2 13.8 15.1 36.1 74.6 13.5 15.2 36.0
PerLA 74.4 13.7 15.8 36.5 75.1 14.2 15.9 36.6 76.4 14.3 16.3 40.0 77.0 14.3 16.4 38.2

96 to 128 tokens. Moreover, our proposed method PerLA
consistently outperforms LL3DA across all token configu-
rations and evaluation metrics.

E.4. Performance for two stage training
As in prior works [9, 21], PerLA uses a two-stage train-
ing strategy, where the model is pre-trained on an ensem-
ble dataset comprising diverse 3D tasks. This ensemble
dataset allows the model to develop a broad understanding
of various 3D scenarios, building the base as a 3D gener-
alist model, such as scene description, dense captioning,
and question answering. Then, instruction-following fine-
tuning is further applied to the generalist model to further
enhance its performance on specialized downstream tasks,
such as 3D dense captioning and 3D question answering,
using task-specific datasets.

We evaluate the performance of PerLA under this two-
stage training paradigm, as summarized in Tab. K, together
with several baseline methods. The first three rows in Tab. K
display the performance of models trained from scratch as
task-specific experts. The next three rows show the results
of models fine-tuned on individual tasks, initialized from
the generalist model’s weights. The final row reports the
performance of the generalist model without fine-tuning,
where a single set of weights is used to handle all tasks.

Our generalist model (the last row without fine-tuning)
demonstrates strong task differentiation capabilities, ex-
celling in tasks such as 3D dense captioning and 3D ques-
tion answering when provided with appropriate textual in-
structions and visual prompts. For instance, the fine-tuned
model achieves notable improvements on ScanRefer (69.41
C@0.5) and ScanQA (78.13 CiDEr), showcasing its ability
to leverage the generalist pre-training to boost downstream
task performances. However, the generalist model exhibits
relatively lower performance on Nr3D compared to Scan-
Refer, likely because these datasets address the same dense
captioning task, and explicit differentiation between them
was not included during training. Despite this, the model
achieves higher scores on ScanRefer (69.41 C@0.5), po-
tentially indicating a preference for dataset-specific charac-
teristics or structural differences between the datasets. Im-
portantly, the generalist weights serve as a strong initializa-
tion for fine-tuning specific tasks. For example, the fine-
tuned model on ScanRefer reaches 69.41 C@0.5, signifi-
cantly outperforming the model trained from scratch (63.02
C@0.5). This highlights the advantages of pretraining as
a generalist in boosting task-specific performance. Over-

all, the results demonstrate that such two-stage training ap-
proach enables effective multi-task learning while maintain-
ing robust performance across individual tasks, even when
faced with diverse datasets and objectives.

E.5. More results on Scene Description, Embodied
Dialogue and Embodied Planning

To provide a comprehensive evaluation, we present addi-
tional results on the tasks of scene description, embodied
dialogue, and embodied planning using the ScanNet subset
of the 3D-LLM dataset [21], which has been used as part
of our pre-training dataset. Consistent with the dataset split
defined prior work [9], scenes with IDs less than 600 are
used for training, while the remaining scenes are reserved
for validation. We evaluate these tasks using the same met-
rics as in the main paper: BLEU-n [43] (1-4), CiDER [55],
METEOR [3], and Rouge-L [34].

As shown in Tab. L, for scene description, PerLA outper-
forms all baselines, including LL3DA, across all metrics.
Notably, it achieves substantial improvements in CiDER
(+3.07) and METEOR (+1.54) compared to LL3DA.

For embodied dialogue, while LL3DA has already
scored quite competitive performance, PerLA achieves fur-
ther improvements across all metrics, with significant mar-
gins in BLEU-4 (+1.34), CiDER (+2.66), and METEOR
(+6.05). In embodied planning, PerLA achieves the highest
scores across all metrics, surpassing LL3DA, with notable
improvements in CiDER (+16.93) and METEOR (+6.41)

These results affirm that PerLA, by enhancing the capa-
bility of 3DLAs in perceiving 3D scene details, can consis-
tently improve performance on various downstream tasks,
being beneficial to not only perception tasks but also tasks
in general embodied context, such as planning.

E.6. Qualitative results
We provide additional qualitative visualization results
(Fig. F) on two 3D scene understanding tasks: 3D ques-
tion answering and 3D dense captioning. The visualization
includes (a) question answering on ScanQA [2], (b) dense
captioning on ScanRefer [6], and (c) dense captioning on
Nr3D [1]. These examples underscore the effectiveness of
PerLA in producing more accurate responses when address-
ing questions specific to a given 3D scene.

For the 3D question aswering task on ScanQA, PerLA
is able to correctly interpret natural language questions and
respond with accurate answers that are grounded in the 3D
scene. For example, when asked, “What color is the chair

Table K. Performance for Two-Stage Training. The first three rows report the performance of PerLA trained from scratch as task-specific
experts on their respective training datasets. The subsequent three rows present the results of models fine-tuned on each dataset using
weights initialized from the generalist model trained across all task-specific datasets. The final row evaluates the generalist model’s
performance without fine-tuning. ScanRefer [6] and Nr3D [1] are evaluated for dense captioning, while ScanQA [2] is evaluated for
question answering. The results demonstrate the effectiveness of our generalist model in multi-task scenarios and its strong performance
after fine-tuning.

Method ScanRefer@0.5 Nr3D@0.5 ScanQA

C↑ B4↑ M↑ R↑ C↑ B4↑ M↑ R↑ C↑ B4↑ M↑ R↑

ScanRefer (scratch) 63.02 35.02 25.61 54.09 - - - - - - - -
Nr3D (scratch) - - - - 48.37 28.36 25.72 55.97 - - - -
ScanQA (scratch) - - - - - - - - 74.44 13.69 15.78 36.49

ScanRefer (fine-tuned) 69.41 38.02 29.07 56.80 - - - - - - - -
Nr3D (fine-tuned) - - - - 55.06 31.24 28.52 59.13 - - - -
ScanQA (fine-tuned) - - - - - - - - 78.13 14.49 17.44 39.60

w/o fine-tuning 66.10 37.03 27.33 54.92 51.57 28.40 26.24 56.32 76.88 14.05 16.07 37.97

Table L. Quantitative Comparisons on Scene Description, Embodied Dialogue, and Embodied Planning on the ScanNet part of 3D-
LLM [21] with a beam size = 4 for beam search.

Task Method BLEU-1↑ BLEU-2↑ BLEU-3↑ BLEU-4↑ CiDER↑ METEOR↑ Rouge-L↑

Sce
ne

Desc
rip

tio
n OPT-1.3B [66] 15.79 6.10 2.07 0.84 0.00 8.40 11.70

OPT-2.7B [66] 19.97 7.59 3.62 1.13 0.00 6.60 12.32
OPT-6.7B [66] 24.40 9.93 3.64 1.13 0.06 8.99 16.96
LLAMA-7B [54] 19.26 7.69 2.79 0.92 0.20 7.00 12.31
LL3DA [9] 29.94 21.56 14.93 10.02 1.32 12.31 27.08
PerLA 31.29 23.67 16.23 12.14 4.39 13.85 28.79

Embo
die

d Dial
og

ue OPT-1.3B [66] 2.44 1.05 0.46 0.23 0.31 5.62 4.83
OPT-2.7B [66] 3.88 1.56 0.73 0.39 0.38 7.38 6.28
OPT-6.7B [66] 3.59 1.65 0.81 0.43 0.25 6.88 6.16
LLAMA-7B [54] 4.08 1.80 0.90 0.50 0.27 7.81 6.68
LL3DA [9] 48.14 39.83 34.83 31.32 260.07 27.21 47.69
PerLA 49.91 41.10 36.06 32.66 262.73 33.26 48.24

Embo
die

d Plan
nin

g OPT-1.3B [66] 1.26 0.59 0.26 0.13 0.16 0.24 3.56
OPT-2.7B [66] 2.02 0.99 0.49 0.26 0.10 3.59 4.35
OPT-6.7B [66] 2.03 1.06 0.53 0.28 0.00 3.65 3.94
LLAMA-7B [54] 2.24 1.13 0.55 0.29 0.04 3.53 4.71
LL3DA [9] 45.07 33.04 24.96 19.15 196.78 19.87 45.58
PerLA 48.96 36.19 27.82 22.42 213.71 26.28 47.57

near the desk?” or “How many doors are in the room?”,
PerLA can accurately identify relevant objects and their at-
tributes. While in contrast, baseline models like LL3DA [9]
struggle with questions requiring multi-step reasoning or
fine-grained scene comprehension, often producing incom-
plete or incorrect answers.

For the 3D dense captioning task, PerLA also demon-
strates exceptional descriptive capabilities, accurately cap-
turing object attributes (e.g., “the rectangular brown desk”
and “the round table in the center of the room”) and spatial
relationships. In comparison, LL3DA [9] might produce
incomplete or inaccurate descriptions. PerLA ’s ability to
provide accurate output is particularly evident in challeng-

ing cases, such as “There is a rectangular whiteboard. It
is on the wall.” in ScanRefer, and small or partially re-
constructed objects, such as “The plant on the desk next
to the window.” in Nr3D. Moreover, in the example of “The
door that is open.” and “The backpack closest to the bed.”
in Nr3D, PerLA showcases its advanced fine-grained spa-
tial understanding of the object. generating outputs such
as “the door that is open” and “the backpack closest to the
bed.” These examples highlight its superior understanding
of both object attributes and spatial relationships, further
distinguishing PerLA as a more percepti solution for 3D
scene understanding tasks.

A blue and brown chair is in front
of a desk with what on it?

Desk

Laptop

LL3DA

PerLA

How many pairs of shoes can be
seen lying in front of the table?

3

2

LL3DA

PerLA

What is the black tv above?

Desk

Bed

LL3DA

PerLA

What is the object in front of a
very bright window?

Sofa chair

Lamp

LL3DA

PerLA

What color sofa chair is next to a
queen-size bed?

White

Brown

LL3DA

PerLA

In what part of the room is the
mini fridge located?

Cabinet

Corner

LL3DA

PerLA

How many pillows are on the
bed, to the left?

6 pillows

4 pillows

LL3DA

PerLA

(a) 3D question answering on ScanQA [2]

Describe this [bbox] object.

<EMPTY>

There is a rectangular brown desk.
It is next to a chair.

LL3DA

PerLA

Describe this [bbox] object.

This is a white bathroom cabinet.
It is to the right of the sink.

There is a rectangular whiteboard.
It is on the wall.

LL3DA

PerLA

Describe this [bbox] object.

There is a rectangular table.
It is to the left of the couch.

This is a round table.
It is in the center of the room.

LL3DA

PerLA

Describe this [bbox] object.

This is a brown chair.
It is to the right of the door.

This is a black chair.
It is to the right of another chair.

LL3DA

PerLA

(b) 3D dense captioning on ScanRefer [6]

(b) 3D dense captioning on ScanRefer [6]

Describe this [bbox] object.

The lamp on the desk closest
to the window.

The plant on the desk next
to the window.

LL3DA

PerLA

Describe this [bbox] object.

The plant on the desk by the window.

The plant on the desk by the window.

LL3DA

PerLA

Describe this [bbox] object.

The door closest to the bed.

The door that is open.

LL3DA

PerLA

Describe this [bbox] object.

<EMPTY>

The backpack closest to the bed.

LL3DA

PerLA

(d) 3D dense captioning on Nr3D [1]

(e) 3D dense captioning on Nr3D [1]

Figure F. Qualitative results for 3D scene understanding tasks, including (a) question answering on ScanQA [2], (b,c) dense captioning
on ScanRefer [6], and (d,e) dense captioning on Nr3D [1]. On ScanQA, PerLA successfully identifies and reasons about objects and their
relationships in the scene. For example, when asked, “What is the color of the sofa chair next to a queen-sized bed?”, PerLA accurately
answers by localizing the relevant chair and determining its color. Similarly, for complex spatial queries like “Which item is to the left
of the bookshelf? PerLA shows a clear understanding of spatial relationships, providing correct and concise answers. For ScanRefer,
PerLA demonstrates robust descriptive capabilities by capturing object attributes (e.g., “the rectangular brown desk” and “the round table
in the center of the room”) and spatial relationships. Compared to LL3DA [9], which often generates incomplete or erroneous descriptions,
PerLA excels in producing detailed and accurate outputs. Similarly, on Nr3D, PerLA showcases fine-grained spatial reasoning, with
outputs like “the door that is open” and “the backpack closest to the bed,” emphasizing its superior understanding of object attributes and
spatial relationships.

