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1. Overview
In this supplementary material, we provide additional ex-
perimental results and technical details to complement the
main paper. Specifically, we demonstrate the applicability
of our proposed SAM-I2V across different SAM variants
in section 2. We also present comprehensive evaluations on
the semi-supervised video object segmentation (Semi-VOS)
task in section 3. Then, we include visual comparisons with
state-of-the-art methods in section 4. We further compare
and analyze the computational efficiency in section 5 and
explore SAM-I2V’s scalability in section 6. Finally, de-
tailed descriptions of the modules in our pipeline, including
memory encoder, memory attention and mask decoder, are
provided in section 7.

2. Applicability of SAM-I2V Across Different
SAM Variants

To further validate the versatility and robustness of our pro-
posed SAM-I2V approach, we conducted additional experi-
ments on various SAM variants, upgrading them to prompt-
able video segmentation (PVS) models. Figure 1 demon-
strates the performance improvements (under the online, 3-
click PVS setting) when upgraded with SAM-I2V across
five SAM variants, including TinySAM [9], EdgeSAM [12],
MobileSAM [11], SlimSAM [3], and SAM-Base [6]. The
results highlight the applicability of SAM-I2V in upgrading
these promptable image segmentation models to prompt-
able video segmentation models.

For each SAM variant, SAM-I2V consistently brings
performance (J&F [7]) gains across datasets, including
ESD [5], PUMA [1], LV-VIS [10], and SAV-Test [8], as
well as the overall accuracy (OA) . For example, in the case
of TinySAM [9], our approach improves the OA from 61.7
to 69.3, representing an improvement of 7.6 points. Simi-
larly, for EdgeSAM [12], SAM-I2V achieves an improve-
ment of 6.6 points in OA, demonstrating the robustness of
our approach across different SAM models.
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These results reaffirm that our SAM-I2V can serve as an
efficient and adaptable image-to-video upgradation frame-
work, allowing various SAM models to transition into PVS
models without the need for costly training.

3. Comparison on Semi-Supervised Video Ob-
ject Segmentation

In addition to the online and offline promptable video seg-
mentation results presented in the main paper, we further
evaluate our method on the semi-supervised video object
segmentation (Semi-VOS) task. For this task, prompts were
provided only on the first frame, and the model was tasked
with tracking the object through the remainder of the video.
This task highlighted the model’s capacity for autonomous
object tracking without continuous user input, showcasing
robustness and generalization in scenarios without ongoing
guidance. Table 1 summarizes the performance compar-
isons under three types of first-frame prompts (i.e., 3-clicks,
bounding box, and ground-truth mask) across four bench-
mark datasets (i.e., ES [5], PU [1], LV [10], and SV [8]).

Despite not including any VOS datasets during training,
our method achieves performance comparable to state-of-
the-art VOS methods while utilizing fewer model parame-
ters. Specifically, our method, TinySAM + SAM-I2V, attains
an overall segmentation performance (OA) of 70.2, which
is competitive with larger models like TinySAM [9] + Cutie
[4] (OA of 70.6) that require more than double the param-
eters (45.1M vs. 18.9M). Moreover, compared to baseline
image-to-video upgrade methods such as TinySAM + TA [8]
and TinySAM + SA [2] + TA [8], our method shows sub-
stantial improvements of 7.5 and 4.7 in OA, respectively,
while maintaining similar computational costs.

Under different first-frame prompt settings, our method
consistently outperforms the baselines. For instance, with
the 3-click prompt on the ES [5] dataset, our method
achieves an accuracy of 84.7, surpassing TinySAM + TA
(80.0) and TinySAM + SA + TA (79.0). Similarly, with the
bounding box prompt on the PU [1] dataset, our method
attains 66.1 accuracy, exceeding the baselines by signifi-
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Figure 1. The applicability of our proposed SAM-I2V to upgrade different SAM models for promptable video segmentation (PVS) task
under the online, 3-click setting. The comparison includes five SAM variants: TinySAM [9], EdgeSAM [12], MobileSAM [11], SlimSAM
[3], and SAM-Base [6].



Methods Para.
(M) Cost

3-click bounding box ground-truth mask† Average
OA

ES PU LV SV ES PU LV SV ES PU LV SV ES PU LV SV

SAM 2.1 [8] 38.9 2.2m 86.6 66.8 78.1 74.4 87.8 75.4 77.7 75.1 90.2 80.9 82.2 76.5 88.2 74.4 79.3 75.3 79.3

SAM [6] + XMem++ [1] 157.0 - 84.5 52.7 71.6 58.4 86.3 63.0 73.0 59.7 90.0 67.9 80.7 61.5 86.9 61.2 75.1 59.9 70.8

SAM [6] + Cutie [4] 129.8 - 84.6 51.0 71.9 61.1 86.1 60.0 73.4 62.8 89.7 62.5 81.4 64.8 86.8 57.8 75.6 62.9 70.8

TinySAM [9] + XMem++ [1] 72.3 - 84.0 59.7 71.3 58.8 84.5 60.2 70.1 58.4 90.0 67.9 80.7 61.5 86.2 62.6 74.0 59.6 70.6

TinySAM [9] + Cutie [4] 45.1 - 84.1 56.7 72.0 61.1 84.3 58.5 70.8 61.3 89.7 62.5 81.4 64.8 86.0 59.2 74.7 62.4 70.6

TinySAM [9] + TA [8] 17.8 4.6k 80.0 45.0 71.2 48.6 80.2 47.3 69.3 48.6 83.1 52.5 77.3 49.6 81.1 48.3 72.6 48.9 62.7

TinySAM [9] + SA [2] + TA [8] 18.7 4.6k 79.0 54.9 71.5 49.8 79.9 57.6 70.5 49.8 83.5 61.1 77.4 50.5 80.8 57.9 73.1 50.0 65.5

TinySAM [9] + SAM-I2V (Ours) 18.9 4.6k 84.7 58.1 72.3 57.0 83.2 66.1 69.5 56.5 87.8 68.9 79.3 59.3 85.2 64.4 73.7 57.6 70.2

Table 1. Comparisons of the semi-supervised video object segmentation with three types of prompt (i.e., 3-click, bounding box, and
ground-truth mask) in the first video frame on four benchmark datasets (i.e., ES [5], PU [1], LV [10], and SV [8]). “-” indicates directly
combining existing pre-trained models for inference. “Cost” is calculated by GPU number × GPU memory × training hours. “OA”
denotes the overall performance. “†” indicates the case where we directly use masks as inputs into VOS model without using SAM.

cant margins. When using the ground-truth mask as the
prompt, our method still maintains superior performance
across datasets. These results clearly validate the effective-
ness of our approach in zero-shot semi-supervised VOS per-
formance under various prompt settings.

4. Visual Comparison with State-of-the-Art
Methods

We further present visual comparisons of our method with
state-of-the-art approaches under the online, 3-click PVS
setting. As shown in Figures 4–8, our method, TinySAM
+ SAM-12V, robustly tracks and segments objects with
fine details across challenging scenarios, maintaining con-
sistency over time. Specifically, Figure 4 demonstrates our
method’s ability to handle occlusion effectively; Figure 5
showcases accurate segmentation of small objects; Figure 6
illustrates robust tracking during large spatial movements;
Figure 7 and 8 highlight the segmentation of objects with
complex shapes. While differences in segmentation results
can be observed across methods, our approach consistently
delivers competitive performance, particularly in scenar-
ios requiring fine-grained object representation and robust
tracking across multiple frames. This clearly demonstrate
the effectiveness of our method.

5. FLOPs Comparison and Analysis
We focus in this work on developing an image-to-video
SAM-upgrader to support promptable video segmentation
with academic-affordable training cost. For completeness,
we report computational efficiency comparisons in Table 2.

First, we can see from Table 2 that our method
exhibits superior computational efficiency (87.4G) com-
pared to SAM 2.1 [8] (139.9G) and SAM-based [6]
variants (805.2G–811.9G), while maintaining parity with
TinySAM-driven [9] approaches (72.9G–103.0G).

Methods Para. (M) FLOPs (G)
SAM 2.1 [8] 38.9 139.9

SAM [6] + XMem++ [1] 157.0 805.2

SAM [6] + Cutie [4] 129.8 811.9

TinySAM [9] + XMem++ [1] 72.3 96.3

TinySAM [9] + Cutie [4] 45.1 103.0

TinySAM [9] + TA [8] 17.8 72.9

TinySAM [9] + SA [2] + TA [8] 18.7 75.0

TinySAM [9] + SAM-I2V (Ours) 18.9 87.4

Table 2. Comparisons in terms of model parameters and FLOPs.

SAM-I2V Para. (M) FLOPs (G)
Temporal Feature Integrator 3.7 26.3

Memory Selective Associator: Memory Encoder 1.4 5.8
Memory Selective Associator: Memory Selector 0.0 0.107
Memory Selective Associator: Memory Attention 2.8 14.6

Memory Prompt Generator 0.6 0.9

Overall 8.5 47.707

Table 3. Analysis of SAM-I2V’s computational efficiency.

Second, as shown in Table 3, in our SAM-I2V, the
temporal feature integrator (26.3G) and memory selec-
tive associator: memory attention (14.6G) collectively ac-
count for 85.7% of the upgrader’s computational overhead.
This is primarily driven by temporal feature extraction and
memory-guided attention operations, respectively, estab-
lishing them as critical targets for future FLOPs optimiza-
tion. Besides, our memory selector (0.107G) achieves ex-
tended historical frame association (20 frames versus SAM
2’s 6 frames) with extra 158 MB GPU memory footprint.
This represents 0.64% of the total capacity in modern 24GB
GPUs, where memory allocation is dominated by similarity
score computation between the current frame and the his-
torical feature buffer.
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Figure 2. Architecture details of the mask decoder.
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Figure 3. Illustration of the memory selective associator (MSA).

SAM-I2V Training Configuration
(#Num. × #Mem. × #Dur.) Training Cost SAV-Test

(J&F)

(a) 8 × 24 G × 24 hours 4.6k 59.3

(b) 8 × 24 G × 48 hours 9.2k 62.6

(c) 16 × 24 G × 24 hours 9.2k 62.9

(d) 32 × 24 G × 24 hours 18.4k 65.2

Table 4. Ablation study on SAM-I2V’s scalability.

Third, our SAM-I2V achieves image-to-video upgra-
dation with extra 8.5M parameters and 47.707G FLOPs,
demonstrating training feasibility under academic GPU
constraints. This establishes a practical foundation for
training-resource-efficient PVS model development.

6. SAM-I2V’s Scalability

We further explored the scalability of our SAM-I2V when
additional GPU resources are available. As shown in Ta-
ble 4, as we increase the training duration (b) or the number
of GPUs (c and d), SAM-I2V’s training cost grows propor-
tionally but yields higher SAV-Test performance (59.3 to
65.2), indicating the model’s scalability under greater train-
ing investments.

7. Architecture Details

Here we further present architecture details, expanding on
the model description in the main manuscript.

7.1. Memory Selective Associator

As illustrated in Figure 3, our proposed MSA consists of
three sub-networks, i.e., memory encoder, memory selector
and memory attention.

The memory encoder is a crucial component designed
to transform predictions and image encoder embeddings
into representations suitable for future frames in the video
segmentation. As shown in the top-right of Figure 3, the
memory encoder incorporates a combination of downsam-
pled mask features and projected image features, which are
fused using convolutional layers. This fusion process en-
sures that spatial and contextual information from both in-
put sources is effectively integrated. The resulting fused
features are then passed through an output feature projec-
tion layer to prepare them for the following memory atten-
tion.

The memory attention is designed to condition the cur-
rent frame features on the past frames’ features and pre-
dictions. This conditioning is achieved through a stack
of B = 4 transformer blocks, where each block con-
sists of three main components: a self-attention layer, a
cross-attention layer, and a feedforward multi-layer percep-
tron (MLP). The self-attention layer processes the current
frame’s features to capture intra-frame relationships, ensur-
ing a comprehensive understanding of spatial dependencies
within the frame. The cross-attention layer enables inter-
action between the current frame and the selective mem-
ories, which include features from both prompted and un-
prompted previous frames. The memories are stored in the
memory bank and are selectively retrieved based on rele-
vance. Each attention block is normalized before and after
the attention operations to maintain stability during training.
2D spatial Rotary Positional Embedding (RoPE) is utilized



within self-attention and cross-attention layers to enhance
the spatial correspondence of features. Following the at-
tention stages, the MLP further refines the fused features
to enhance representational capability. This modular design
allows the model to integrate temporal context across video
frames, ensuring robust segmentation predictions.

Overall, the memory selective associator plays a pivotal
role in enabling the model to maintain and utilize useful
temporal information across video frames, facilitating ro-
bust mask propogation for accurate video segmentation.

7.2. Mask Decoder

The mask decoder is designed to segment objects based on
image embeddings and prompt tokens. Our architecture ex-
tends the design of SAM’s mask decoder, incorporating ad-
ditional memory prompts for enhanced segmentation across
video frames.

In Figure 2, the prompt tokens represent input guidance
such as clicks, bounding boxes, or masks, while memory
prompt tokens encode temporal information from previous
frames to guide the segmentation in current frame. The in-
clusion of memory prompt tokens enhances temporal con-
sistency by leveraging the historical context of target ob-
jects. The mask decoder employs a sequence of two-way
transformer blocks to enable bidirectional attention between
image embeddings and tokens. Specifically, the following
attention mechanisms are employed:

1. Self-attention: Applied to prompt tokens to learn in-
teractions within the token space.

2. Token-to-image attention: Enables token embed-
dings to query relevant image features.

3. Image-to-token attention: Aggregates image feature
responses into token representations.

After feature fusion through the transformer blocks, the
decoder outputs multiple predictions per frame to handle
prompt ambiguities (e.g., a click on the tire of a bicycle
could correspond to either the tire or the entire bicycle). To
disambiguate these predictions, we propagate only the mask
with the highest predicted Intersection over Union (IoU)
score. Additionally, following [8], the decoder features an
occlusion prediction head, implemented as an MLP, which
predicts whether the target object is visible in the current
frame. This is crucial for handling frames where the object
is partially or fully occluded.
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Figure 4. Visual comparison with state-of-the-art methods on a challenging video sequence from PUMaVOS [1] dataset. The methods
compared include SAM 2.1 [8], SAM [6] + XMem++ [1], SAM [6] + Cutie [4], TinySAM [9] + XMem++ [1], TinySAM [9] + Cutie
[4], TinySAM [9] + TA [8], and TinySAM [9] + SA [2] + TA [8]. Our method, TinySAM + SAM-12V, demonstrates robust tracking and
fine-grained segmentation on video frames, offering competitive performance across challenging scenarios.
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Figure 5. Visual comparison with state-of-the-art methods on a challenging video sequence from LV-VIS [10] dataset. The methods
compared include SAM 2.1 [8], SAM [6] + XMem++ [1], SAM [6] + Cutie [4], TinySAM [9] + XMem++ [1], TinySAM [9] + Cutie
[4], TinySAM [9] + TA [8], and TinySAM [9] + SA [2] + TA [8]. Our method, TinySAM + SAM-12V, demonstrates robust tracking and
fine-grained segmentation on video frames, offering competitive performance across challenging scenarios.
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Figure 6. Visual comparison with state-of-the-art methods on a challenging video sequence from LV-VIS [10] dataset. The methods
compared include SAM 2.1 [8], SAM [6] + XMem++ [1], SAM [6] + Cutie [4], TinySAM [9] + XMem++ [1], TinySAM [9] + Cutie
[4], TinySAM [9] + TA [8], and TinySAM [9] + SA [2] + TA [8]. Our method, TinySAM + SAM-12V, demonstrates robust tracking and
fine-grained segmentation on video frames, offering competitive performance across challenging scenarios.
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Figure 7. Visual comparison with state-of-the-art methods on a challenging video sequence from LV-VIS [10] dataset. The methods
compared include SAM 2.1 [8], SAM [6] + XMem++ [1], SAM [6] + Cutie [4], TinySAM [9] + XMem++ [1], TinySAM [9] + Cutie
[4], TinySAM [9] + TA [8], and TinySAM [9] + SA [2] + TA [8]. Our method, TinySAM + SAM-12V, demonstrates robust tracking and
fine-grained segmentation on video frames, offering competitive performance across challenging scenarios.
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Figure 8. Visual comparison with state-of-the-art methods on a challenging video sequence from LV-VIS [10] dataset. The methods
compared include SAM 2.1 [8], SAM [6] + XMem++ [1], SAM [6] + Cutie [4], TinySAM [9] + XMem++ [1], TinySAM [9] + Cutie
[4], TinySAM [9] + TA [8], and TinySAM [9] + SA [2] + TA [8]. Our method, TinySAM + SAM-12V, demonstrates robust tracking and
fine-grained segmentation on video frames, offering competitive performance across challenging scenarios.


