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7. Inference Latency Comparison

We compare the inference latency of our method against
state-of-the-art (SOTA) methods in real scenarios. This com-
parison includes the total latency including image reading
and writing, cross-modality prediction, and image caption-
ing. The latency of each method was measured using its
official code/script. Constrained by the implementation dif-
ficulty, MMSR is measured on the TPU platform and the
rest methods are measured on the comparable NVIDIA GPU
platform. Table 4 presents the results, demonstrating that
our efficient multimodal strategy achieves the second fastest.

PASD SUPIR SeeSR MMSR

Latency (s) 5.60 18.01 30.86 6.06

Table 4. Inference latency of our method and compared SOTA.

8. Impact of Varying CFG Rates

Figures 5 and 6 in the main text, along with Figures 17, 18,
19, and 20 presented in the supplementary material, com-
prehensively demonstrate the key benefit of our method:
a significant reduction in the excessive hallucinations and
spurious details often produced by text-driven generative
super-resolution approaches. By varying the CFG rates, we
further show that our method acheives the better trade-off
between reference-based and non-reference-based image
quality metrics. Reference-based metrics reflect fidelity to
the ground truth high-resolution image, while non-reference-
based metrics assess perceptual quality and naturalness. As
previously established by Blau and Michaeli [5], distortion
and perceptual quality are conflicting objectives. However,
Figure 10 shows that multimodal guidance not only improves
performance at high classifier-free guidance (CFG) rates but
also achieves a superior balance between these competing
metrics, enhancing perceptual quality while mitigating the
loss of fidelity to the target high-resolution image. The visual
results in Figure 11 further demonstrate the superiority.

Figure 10. Our method improves the perception distortion trade-off
of the past super-resolution methods.

SeeSR cfg=26 MMSR m-cfg=26 HR

Figure 11. Our method avoids excessive hallucinations of SeeSR
when using the same large CFG rate of 26.

9. Extension to Diffusion Transformers

Diffusion Transformers, such as DiT [48] and MMDiT [20],
operate on tokenized image patches during the diffusion pro-
cess. In contrast to diffusion models based on U-Nets [55],
Diffusion Transformers are better equipped to leverage in-
formation from tokenized text prompts, leading to improved
text-coherency in text-to-image generation. It is natural to
ask whether the effect of our multimodal guidance is still
significant if the diffusion model itself is already optimized
for better text-prompt grounding. We demonstrate the effect
by comparing diffusion transformers with using multimodal
guidance and using text-guidance only.

Our experiments show that our multimodal approach sur-
passes text-based super-resolution when applied to Diffusion
Transformers. Figure 12 presents a comparison of the train-
ing loss for both methods, highlighting the superior perfor-
mance of our multimodal guidance strategy. Furthermore,
Table 5 provides a quantitative comparison of the two DiT
based models.

The adopted Diffusion Transformer architecture is similar
to the MMDiT used in Stable Diffusion 3 [20]. We employ
the hidden features of the CLIP encoder and the T5 model
for text embedding, leveraging their enhanced representation
of text prompts. The crucial difference between our MMSR-
DiT and the baseline text-based DiT lies in the incorporation
of these multimodal latent tokens.

1



It is worth noting that both models were randomly initial-
ized rather than warm-started from pre-trained text-to-image
models due to computational constraints. Nevertheless, the
comparison remains valid and demonstrates the superiority
of our multimodal guidance, as both models share the same
architecture, and were trained in equal forms.

Figure 12. Training loss comparisons between the text-based diffu-
sion transformer and our multi-modal-based diffusion transformer.

Method MUSIQ NIQE # DISTS # LPIPS #

text-based DiT 72.16 4.3266 0.1957 0.3453
MMSR-DiT 72.18 4.0960 0.1621 0.2809

Table 5. Quantitative result comparison between the text-based DiT
and multimodal DiT on 1MP DIV-2K val set.

10. Dependence on Multimodal Input Quality

Our method leverages the prior knowledge encapsulated
in pretrained cross-modal predictors, including Gemini
Flash [58], Depth-anything [69], and Mask2Former [12].
The more accurate their predictions are the better super-
resolution performance. We analyze the performance of
our method across varying accuracy levels of cross-modal
input. Specifically, we evaluate three variants: (a) low accu-
racy: modalities predicted directly from the low-resolution
input; (b) medium accuracy: modalities predicted from our
zero-modal super-resolution results; and (c) high accuracy:
modalities predicted from the high-resolution target. Fig-
ure 13 provides visual examples for each accuracy level.
Results demonstrate that our method is robust to variations
in input modality quality, with zero-modal super-resolution
effectively compensating for low-accuracy cross-modal pre-
dictions. Consequently, zero-modal super-resolution leads to
improved results that closely approach those obtained with
ground-truth modalities.

Special Cases in DRealSR Benchmark. The aforemen-
tioned investigation shows that extracting reasonable cross-
modal predictions from low-resolution images is essential

Accuracy MUSIQ NIQE # DISTS # LPIPS #

Low-accuracy Modality 68.65 3.8874 0.1674 0.3449
Mid-accuracy Modality 72.31 3.4243 0.1504 0.2965

High-accuracy Modality 72.32 3.3789 0.1492 0.2938

Table 6. Our method achieves better SISR performance on higher-
accuracy modality input than lower-accuracy modality input.

Low-accuracy Modality Mid-accuracy Modality High-accuracy Modality

Figure 13. For low-quality cross-modal estimation from the low-
resolution image, our method can increase the estimation accuracy
by conducting zero-modal SISR on the low-resolution image.

Figure 14. Special cases in DRealSR benchmark visualization.

for ensuring our method achieves reasonable performance.
Nevertheless, we notice that it is impossible to correctly esti-
mate the modalities of three special images in the DRealSR
benchmark, which are purely flat images. We manually
replace their incorrectly predicted modalities with the m;
token. Figure 14 visualizes these three special images for
comprehensive understanding. Specifically, replacing these
three images improves the CLIPIQA score of our method
from 0.6892 to 0.6999.

11. Image Captioning Prompt Engineering

When tasked with image captioning, vision-language mod-
els (VLMs) like Gemini [58] often produce unsatisfactory
results if given only simple instructions. Direct prompts,
such as instructing the model to simply “caption the image,”
frequently lead to generic and uninformative outputs, includ-
ing phrases like “Here is what I see from the image...” or
captions in unsupported languages.

To mitigate these issues and generate more reliable and
informative captions, we leverage in-context learning to
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guide Gemini, following the practice in recent works [7, 67].
Specifically, we provide the model with examples of success-
ful image-caption pairs, demonstrating the desired output
format and level of detail. Table 7 presents a comparison
of captioning results obtained using our in-context learning
prompt and a standard, direct prompt. The results clearly
demonstrate the superiority of our approach. Our prompt
consistently generates stable and relevant captions, accu-
rately describing the visual content of the input images.

In contrast, without the benefit of in-context learning,
Gemini’s responses to the standard prompt are often noisy
and less structured. They frequently include extraneous
procedural text, such as “Option 1...”, “Here’s a detailed de-
scription...”, or similar phrasing, which hinders downstream
tasks that rely on these captions. In super-resolution, where
image captions can provide valuable contextual information,
such noisy captions introduce undesirable artifacts and hin-
der performance. Therefore, based on this empirical analysis,
we adopt our carefully crafted in-context learning prompt as
the default image captioning prompt for all experiments.

12. Additional Visual Results

Visualization of Ablating Each Modality Figure 15 vi-
sualizes the results of text-guided super-resolution using
individual input modalities. The observed differences in
visual quality align with the quantitative ablation study in
the main paper: depth and semantic segmentation contribute
mostly to perceptual detail, while edge information primar-
ily enhances fidelity. This observation motivates our core
contribution: effectively combining the strengths of different
modalities for text-guided super-resolution.

More Real-world Results Figure 17 shows more real-
world super-resolution results and the comparison with the
SOTA methods. Our method consistently outperforms the
compared methods generating images with better realism
and less plausible details that are inconsistent with the LR.

1024P High-resolution Results Figure 18, Figure 19, and
Figure 20 show 1024P high-resolution super-resolution re-
sults and a comparison with SeeSR[68]. Our method clearly
produce more details than SeeSR even though without di-
rectly training on 1024P images.

Failing Cases We find that when the LR input is a flat
image and its semantic meaning is unclear, the multimodal
guidance tends to misguide our method, producing incon-
sistent over-hallucinated results. Such flat images are rare
in the DIV2K and LSDIR training sets, and thus a potential
solution for these failing cases would be collecting more
such flat images for training. Figure 16 shows the failing
cases.

Photo, realistic. A
close-up of a male lion
with a dark mane, light

tan face, and pink tongue
sticking out. The lion’s
face is centered in the

frame, slightly angled to
the right. Green grass is
visible in the background,
blurred. The lion appears

relaxed, playful . . .

LR Caption LR (Zoomed)

Depth Segmentation Edge

text + depth result text + segmentation result text + edge result

Figure 15. Visual results of our method under different modali-
ties input. We find that the visual quality changes according the
previous shown trend in different metrics, such as text+depth and
text+segment have most details but less identical to the input.

Photo of a crumpled
light blue fabric

background, monochrome,
abstract. A dark shadow

resembling a stylized
animal head is cast

on the left side of the
image. The fabric texture

is heavily wrinkled
and creased, creating

a dynamic surface.
The composition . . .

LR Caption LR (Zoomed)

Depth Segmentation Edge

SeeSR SUPIR MMSR

Figure 16. Failing case visualization.
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Inputs Outputs
Two people walk along
a narrow path carved

into the reddish-orange
sandstone cliffs. A

small evergreen
tree grows in the

foreground near the
base of the cliff . . .

LR Caption Patch 1 PASD (Zoomed) SeeSR (Zoomed) SUPIR (Zoomed) MMSR (Zoomed)

Depth Segmentation Patch 2 PASD (Zoomed) SeeSR (Zoomed) SUPIR (Zoomed) Ours (Zoomed)

Photo of a mining
town nestled on a
hillside, autumnal

colors. The buildings
are predominantly low-
slung structures with

metal roofs, some . . .

LR Caption Patch 1 PASD (Zoomed) SeeSR (Zoomed) SUPIR (Zoomed) MMSR (Zoomed)

Photo of a weathered
exterior wall detail,

grunge, aged. A
rusty metal lamp is
mounted on a dark

vertical beam against a
crumbling ochre and

brown stucco wall . . .

LR Caption Patch 1 PASD (Zoomed) SeeSR (Zoomed) SUPIR (Zoomed) MMSR (Zoomed)

Photo of a window
with a sign, brick

wall. A simple
white rectangular

sign with black text
reading ”I SUPPORT

WIKILEAKS”
is taped . . .

LR Caption Patch 1 PASD (Zoomed) SeeSR (Zoomed) SUPIR (Zoomed) MMSR (Zoomed)

Photo of a high-detail
stone sculpture, sepia
toned. The sculpture
depicts Jesus Christ

seated, his hands
raised in a gesture

of blessing . . .

LR Caption Patch 1 PASD (Zoomed) SeeSR (Zoomed) SUPIR (Zoomed) MMSR (Zoomed)

Photo of a clock
tower, architectural

detail, close-up view.
The image centers

on a pale pink clock
tower with a light blue

clock face featuring
Roman numerals . . .

LR Caption Patch 1 PASD (Zoomed) SeeSR (Zoomed) SUPIR (Zoomed) MMSR (Zoomed)

Photo of a playground
next to a building,

slightly blurry. The
playground features
orange structures, a
dark blue slide, and

a chain-link fence . . .

LR Caption Patch 1 PASD (Zoomed) SeeSR (Zoomed) SUPIR (Zoomed) MMSR (Zoomed)

Figure 17. MMSR super-resolution results on real-world images compared with state-of-the-art methods. Zoom in to appreciate the details.
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Table 7. Image caption result comparisons between different prompts. We show that our prompt that utilizes in-context learning is stable at
most cases and can always get more detailed image captions without useless procedural words.

Prompt Describe this image and its style in
a very detailed manner

Write a four sentence caption in English
for this image. In the first sentence describe
the style and type (painting, photo, etc) of
the image. Describe in the remaining sen-
tences the contents and composition of the
image. Only use language that would be
used to prompt a text to image model. Do
not include usage. Comma separate key-
words rather than using ”or”. Precise com-
position is important. Avoid phrases like

”Here is...”. Good examples are: ”Photo of
an alien woman with a glowing halo stand-
ing on top of a mountain, wearing a white
robe and silver mask in the futuristic style
with futuristic design, sky background, soft
lighting, dynamic pose, a sense of future
technology, a science fiction movie scene
rendered in the Unreal Engine.”

**Option 1 (Short & Evocative):**
Textures of twilight. **Op-
tion 2 (Descriptive):** Smooth,
windswept curves of snow and
shadow paint an abstract landscape
in dusky hues. **Option 3 (Focus-
ing on Light):** The fading light
reveals the delicate textures etched
onto the snowy slopes. . . .

Photo of a mountainous landscape, abstract,
textured. The image features sweeping
curves of snow and ice, creating a dramatic
diagonal composition. Shades of purple and
blue dominate the color palette, lending a
cool and ethereal atmosphere. The texture
is highly detailed, showing the granular na-
ture of the snow and the sculpted forms of
the terrain.

a close-up view of a car’s hood, re-
flecting a sunlit scene. The hood is
slightly wet, indicated by the subtle
sheen of water droplets that catch
and scatter the light. The reflection
is not sharp or complete, but rather
a shimmering impression of the sur-
rounding environment. . .

Photorealistic image, exterior shot, mod-
ern architecture. A sleek dark gray apart-
ment building with balconies is partially
visible through lush green foliage. The fore-
ground features a wet car hood reflecting
sunlight. The composition emphasizes a
shallow depth of field, focusing on the re-
flection and blurring the background.

Here’s a detailed description of the
image and its style: The image is
a landscape photograph, seemingly
taken in a canyon or arid desert re-
gion, focusing on two hikers travers-
ing a rocky path. Composition and
Subject Matter: . . .

Photo of hikers in a canyon, Bryce Canyon
National Park. Two people walk along a
narrow path carved into the reddish-orange
sandstone cliffs. A small evergreen tree
grows in the foreground near the base of the
cliff. The composition is a high-angle view,
showcasing the scale of the canyon walls
and the small figures of the hikers.
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LR Input

SeeSR

MMSR
Figure 18. MMSR super-resolution results on 1024P DIV2K-Val compared with state-of-the-art methods. Zoom in to appreciate the details.
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LR Input

SeeSR

MMSR
Figure 19. MMSR super-resolution results on 1024P DIV2K-Val compared with state-of-the-art methods. Zoom in to appreciate the details.
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LR Input

SeeSR

MMSR
Figure 20. MMSR super-resolution results on 1024P DIV2K-Val compared with state-of-the-art methods. Zoom in to appreciate the details.
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