
QuCOOP: A Versatile Framework for Solving Composite and
Binary-Parametrised Problems on Quantum Annealers

Supplementary Material

This supplementary material provides a deeper analysis of the proposed optimisation framework and more experimental
details and results. It includes the following sections:
• Proofs of Lemmas 1 to 3 claimed in Sec. 4 of the main text (Appendix A);
• Details of the derivation of QuCOOP’s QUBO problem (9) of the main text (Appendix B);
• A technical comparison between our QuCOOP method and the Q-Match algorithm in solving permutation problems, as

mentioned in Secs. 7.1 and 7.2 of the main text (Appendix C);
• Details on the QABLIB results in Sec. 7.1 of the main text, as well as an investigation of the performance of an iterative

local search variant of QuCOOPon QAPLIB problems (Appendix D);
• Further experiments on shape matching from Sec. 7.2 of the main text, including failure cases on FAUST and results on

the TOSCA dataset (Appendix E);
• Qualitative results of point set registration computed on D-Wave complementing the numerical results of Sec. 7.4 of the

main text (Appendix F);
• Description of the annealing and embedding process on D-Wave’s quantum annealers, relevant for the results in Sec. 7.4

of the main text (Appendix G).
The notation in this supplement mostly follows the conventions of the main text. We summarise them in Tab. I.

Symbol Meaning

S ⊊ Rn Feasible domain of an optimisation problem of interest
X = Bk Parameter set for the feasible domain S
gt Linear Taylor approximation of g around iterate xt

f t Local model, quadratic in gt

∇g Gradient of g with respect to x
⟨·, ·⟩ Standard inner product in Rk

Table I. Main notations used in this paper and their meaning.

A. Proofs of the Lemmas
Proof of Lemma 1. We show that the series of objective function values computed by QuCOOP is non-increasing in either
of the following cases:
1. With no reparametrisation step and under following assumptions:

i) The constraint gt(x) ∈ S is enforced with a penalty term of the form αth(x, xt) with sufficiently large penalty factor
αt ∈ R+ and a function h such that h(xt, xt) = 0, and h(x, xt) > 0 for all x ̸= xt.

ii) At points gt(x) in S that the algorithm can reach in a specific iteration, the linearised parametrisation gt coincides with
g, so that gt(xt+1) = g(xt+1).

2. Alternatively with the reparametrisation step:
It is always possible to change Algorithm 1 to a non-increasing algorithm by including, as mentioned in the main text, a
step xt+1 = g−1(gt(x̃t+1)), where x̃ is the output of Problem (8).

Proof. 1. With no reparametrisation step:
Using Assumptions i): Majorisation-Minimisation argument:
We want to show that f(g(xt+1)) ≤ f(g(xt)) for all t. According to the assumption in i) the Problem (8) can be explicitly
written without constraint as

xt+1 ← argmin
x∈Bk

f t(x), f t(x) := f(gt(x)) + αth(x, xt), (22)

1

where αt ∈ R>0 is a penalty factor and h some function in x ensuring the feasibility so that gt(x) ∈ S. At iteration t,
the QUBO solver finds the minimiser xt+1 of f t among all x ∈ X with gt(x) ∈ S . Automatically, we have f t(xt+1) ≤
f t(xt) = f(g(xt)). It remains to show that

f(g(xt+1)) ≤ f t(xt+1). (23)

We will first show that Eq. (23) can be established for specific designs of h making f t a majoriser of f ◦ g. More
specifically, we will establish the proof for two local models f t

i (x) := f(gt(x)) + αthi(x), i = 1, 2, with

h1(x, x
t) = ⟨x− xt,H(x− xt)⟩ (24)

h2(x, x
t) = ⟨gt(x)− g(xt),H(gt(x)− g(xt))⟩ , (25)

where H ∈ Rk×k is some positive definite matrix ensuring the feasibility on S. As a side note, the design choice h2 is a
special case of h1 with an iteration dependent Ht. To see this, we plug the expression gt(x) = g(xt) + ⟨∇g(xt), x− xt⟩
into h2, yielding h2(x, x

t) = ⟨∇g(xt)⊤(x− xt),H∇g(xt)⊤(x− xt)⟩, from which we can read out that Ht =
∇g(xt)H∇g(xt)⊤. Note that Assumptions i) require ∇g(xt) to have full rank, because otherwise h2(x, x

t) may be
zero for x ̸= xt.
We now show that for h being either h1 or h2, our local model f t in Eq. (22) is a majoriser of f ◦g and Eq. (23) holds. The
proof follows the same argumentation as well-known Majorisation-Minimisation methods [58, Lemma 2.1 & Theorem
2.2]. In essence, from the smoothness of g, we know from [54, Lemma 1.2.3] that there exists a Lipschitz constant a ∈ R
such that for all x ∈ Bk it holds

∥g(x)− g(xt)− ⟨∇g(xt), x− xt⟩ ∥2 ≤ a∥x− xt∥2. (26)

On the other hand, the quadratic function f is Lipschitz continuous on the finite and bounded set S [62, Theorem 10.4],
i.e. ∀x, y ∈ S we can find b ∈ R such that

|f(x)− f(y)| ≤ b∥x− y∥2. (27)

Substituting x = g(x) and y = gt(x) in Eq. (27) and using the relation in Eq. (26), we get

|f(g(x))− f(gt(x))| ≤ b∥g(x)− gt(x)∥ (28)

≤ ab∥x− xt∥2, (29)

from which follows
f(g(x)) ≤ f(gt(x)) + ab∥x− xt∥2. (30)

Next, we compare the objective in Eqs. (22) and (30). Given that H is positive definite, it becomes clear that we can find
a positive constant αt and further majorise (30) by f t

1 as

f(g(x)) ≤ f(gt(x)) + ab∥x− xt∥2 (31)

≤ f(gt(x)) + αt ⟨(x− xt),H(x− xt)⟩ = f t
1(x). (32)

This is also true for h2. Since H is positive definite and ∇g(xt) has full rank, it follows that ∇g(xt)H∇g(xt) is positive
definite too. Hence, with a proper choice of αt, we can further majorise (30) by f2 as

f(g(x)) ≤ f(gt(x)) + ab∥x− xt∥2 (33)

≤ f(gt(x)) + αt ⟨∇g(xt)⊤(x− xt),H∇g(xt)⊤(x− xt)⟩ = f t
2(x). (34)

Hence, by properly setting the penalty factor αt we can majorise the true objective. Thus, f(g(x)) ≤ f t(x) for all x ∈ Bk,
and specifically f(g(xt+1)) + α ⟨g(xt),Hg(xt)⟩ ≤ f t(xt+1) as desired. Looking back at the argumentation so far we
notice that we never had to use any properties of h2(x, x

t) besides the properties listed in assumption i). The assumption
that h(xt, xt) = 0 is crucial to obtain f t(xt) = f(g(xt)). The second condition that h(x, xt) > 0 for all x ̸= xt is
important to prove that f t is a majoriser of f ◦ g if αt is chosen big enough. The general form of the inequalities (32) and
(34) is

f(g(x)) ≤ f(gt(x)) + ab∥x− xt∥2 (35)

≤ f(gt(x)) + αth(x, xt) = f t(x). (36)

2

We can find values for αt so that this holds, because h(x, xt) is non-zero for x ̸= xt and since we only consider binary
vectors for x and xt. For arbitrary x with x ̸= xt the function h(x, xt) could still have approached zero in some limit.
Proof using Assumption ii): Local search argument: Since QuCOOP optimizes over binary vectors x for which gt(x) ∈
S, it follows that g and gt are both valid, possibly different parametrisations of a subset of the feasible set S, and that
we have found a better point on S than g(xt). If the parametrisation on that point differ so that g(xt+1) ̸= gt(xt+1) it is
not clear why g(xt+1) should also have a better objective value than g(xt). However if g(xt+1) = gt(xt+1) on all the
relevant binary vectors xt so that gt(xt+1) ∈ S we have the guarantee that g(xt+1) has also a better energy than g(xt).

2. With the reparametrisation step:
In the case that the two parametrisations gt and g differ, as explained in the main text, we can call x̃ the output of the
minimisation step in Problem (8) and re-calibrate the iterate as xt+1 = g−1(gt(x̃t+1)). It follows that f(g(xt+1)) ≤
f(gt(xt)) = f(g(xt)) as desired.

Note that the re-calibration is also common in classical composite optimisation, cf . [58, Composite Gauss–Newton]. In
our shape matching and point sets registration problems for the case of permutation matrices, if the iteration step stays inside
the set of permutation matrices, then our linearised parametrisation gt coincides with the original parametrisation g. We will
present proof for this result later in this supplement, Lemma 5. This observation saved us the recalibration step and allowed
for fast convergence. In the experiments, we also noticed a monotone decrease in the objective function values.

Proof of Lemma 2. We show that any permutation matrix P of n elements can be written as an ordered product of k =
n(n− 1)/2 binary-parametrised transpositions Pi.

Proof. Let P be an arbitrary permutation we want to decompose in this way and let c be the cycle notation of P. It is well
known that any c can be written as a decomposition of disjoint cycles:

c =
∏
j

f (j). (37)

We will first prove that an arbitrary cycle can be written as a decomposition in 2-cycles in a fixed order. As the order for the
2-cycles we will w.l.o.g. use

((1, 2), (1, 3), ..., (1, n), (2, 3), (2, 4),, (n− 1, n)). (38)

The elements of the ℓ-cycle we want to decompose are denoted as

g = (g1, g2, ..., gℓ). (39)

We construct the decomposition in an iterative fashion. First, let m be the index of the minimal number in the cycle so that

gm = min{g1, ..., gℓ}. (40)

The following identity holds for permutations:

(g1, g2, ..., gℓ) = (gmgm+1)(gm+2, gm+3, ..., gℓ, g1, ..., gm−1, gm+1). (41)

One notices that the problem is reduced to finding the decomposition for a (ℓ− 1)-cycle with a minimal element bigger than
gm. Therefore one can repeat the procedure and the 2-cycles will be in the order given by Eq. (38).

The decomposition (39) only uses the elements g1, g2, ..., gℓ. We can now find these decompositions for each of the
disjoint cycles f (j) that c is decomposed into. Since all the cycles f (j) are disjoint, the 2-cycles a cycle f (i) is decomposed
into are disjoint from the 2-cycles a cycle f (j) is decomposed into for i ̸= j. Since these 2-cycles are disjoint, the product
commutes and can be rearranged in the order of Eq. (38). If one has another order of the cycles than the one in Eq. (38), one
also has to apply the identity (41) in a way that the final decomposition is in that order.

Finally, the number k = n(n− 1)/2 of distinct cycles c can be decomposed into is obvious from Eq. (38).

We have also confirmed via computation that removing a single 2-cycle from the tuple of possible 2-cycles applied in a
fixed order results in not reaching the complete S(d) at least for d ≤ 6.

3

Proof of Lemma 3. We show that the linear approximate permutation matrices Pt(x) computed by our algorithm fulfil the
row and column sum to 1.

Proof. Each partial derivative of P can be calculated as

∂

∂xi
P(x) =

i−1∏
j=1

Pj(xj)
∂

∂xi
Pi(xi)

k∏
j=i+1

Pj(xj) (42)

with ∂
∂x

i

Pi(xi) = Ti − I. So, it is easy to see that there are exactly two rows and two columns of ∂
∂x

i

P(x) that are non-zero
and contain exactly one 1 and one −1 each. Thus, for all x ∈ Bk, it holds

n∑
i=1

⟨∇P(xt), x− xt⟩ij = 0 ∀j (43)

n∑
j=1

⟨∇P(xt), x− xt⟩ij = 0 ∀i. (44)

As per definition Pt(x) = P(xt) + ⟨∇P(xt), x− xt⟩, and since P(xt) ∈ Πn fulfils the row and column sum to 1, the
validity of the claim for Pt is immediate.

B. QUBO Derivation for QuCOOP
We provide details of the derivation of the QUBO in Eq. (9). For ease of notation, let us first write gt(x) as

gt(x) = g(xt) +
〈
∇g(xt), x− xt

〉
(45)

= g(xt)−∇g(xt)⊤xt︸ ︷︷ ︸
=:g

c

+∇g(xt)⊤x︸ ︷︷ ︸
=:g

x

. (46)

Now, we have

f t(x) = f(gt(x)) (47)
= ⟨gc + gx,Q(gc + gx) + c⟩ (48)

= (gc + gx)
⊤Q(gc + gx) + (gc + gx)

⊤c (49)

= g⊤c Qgc + 2g⊤x Qgc + g⊤x Qgx + g⊤c c+ g⊤x c (50)

= g⊤x Qgx + g⊤x (c+ 2Qgc) + g⊤c Qgc + g⊤c c, (51)

where the last two terms are independent with respect to the variable x. Now taking the argmin and discarding those
independent terms, we obtain

argmin
x∈X

f t(x) = argmin
x∈X

g⊤x Qgx + g⊤x (c+ 2Qgc), (52)

from which we can read out the coupling matrix Qt and bias vector c of the QUBO in Eq. (9).

C. Comparison against Q-Match
An interesting question is how does QuCOOP differs from Q-Match [6] on permutation problems. In Q-Match, one linearizes
the inner function by selecting a set of disjoint cycles over which the optimisation is performed. For disjoint cycles, the
permutation matrix can be written as a linear function of the binary variables. As formalised is Lemma 4, we observed that
with our linearisation Pt(x) = P(xt) + ⟨∇P(xt), x− xt⟩ and since P(xt) ∈ Πn, the minimisers x are precisely those
such that x− xt selects the partial derivatives of disjoint cycles in∇P(xt), non-disjoint cycles leading to Pt(x) with higher
Frobenius norms that are being penalised. However, unlike Q-Match where the selection of disjoint cycles is done by hand
which may be sub-optimal, our algorithm optimally selects the best set of disjoint cycles and optimises over them. We will
now give the exact characterisation which permutation matrices can be obtained with our linearisation.

4

Characterisation of Reachable Valid Permutations

Lemma 4. The matrix Pt+1 obtained from Pt with QuCOOP is a permutation matrix, if and only if for all indices where
xt differs from xt+1 the conjugations of the cycles T (−1)xt

i

i of the form

Ci :=

i−1∏
j=1

T
xt

j

j

T
(−1)xt

i

i

 1∏
j=i−1

(
T

xt

j

j

)−1

 (53)

are disjoint.

Proof. First we observe that if we start at the identity permutation the linearisation only lands on a valid permutation if
disjoint cycles are applied. Later the statement will be generalised in the above way for arbitrary xt. The linearisation can be
written in general as

Pt+1(x) = Pt +
∑
i

(xi − xt
i)

∂

∂xi
P(x)|x=xt (Ti − I)

k∏
j=i+1

Pj(x
t
j) (54)

=

k∏
j=1

T
xt

j

j +
∑
i

(xi − xt
i)

i−1∏
j=1

T
xt

j

j

 (Ti − I)

k∏
j=i+1

T
xt

j

j . (55)

Now we insert the zero vector for xt. This yields Pt+1(x) = I+
∑

i(xi) (Ti − I). Furthermore, we observe that Ti− I has
−1 as entries on the diagonal on places where the cycle Ti acts non-trivially. If two cycles that are chosen are not disjoint
then one adds a −2 to a diagonal element of I. Therefore, we can not obtain a permutation matrix in this case.

To generalise this idea we look at the general case described in Eq. (55) and divide by Pt:

 k∏
j=1

Tx
j

j

(
Pt

)−1
= I+

∑
i

(xi − xt
i)

i−1∏
j=1

T
xt

j

j

 (Ti − I)

 k∏
j=i+1

T
xt

j

j

 1∏
j=k

(
T

xt

j

j

)−1

 , (56)

where the product symbol
∏1

j=k indicates that we want to apply the cycles in the reverse order than before. Note that the left
side of the equation is only a permutation matrix if Pt+1 is a permutation matrix. The right side can be further simplified:

 k∏
j=1

Tx
j

j

(
Pt

)−1
= I+

∑
i

(xi − xt
i)

i−1∏
j=1

T
xt

j

j

 (Ti − I)

 1∏
j=i

(
T

xt

j

j

)−1

 (57)

= I+
∑
i

(xi − xt
i)

i−1∏
j=1

T
xt

j

j

 (Ti − I)
(
T

xt

i

i

)−1

 1∏
j=i−1

(
T

xt

j

j

)−1

 (58)

= I+
∑
i

(xi − xt
i)

i−1∏
j=1

T
xt

j

j

(
T

1−xt

i

i −
(
T

xt

i

i

)−1
) 1∏

j=i−1

(
T

xt

j

j

)−1

 (59)

= I+
∑
i

(xi − xt
i)(−1)x

t

i

i−1∏
j=1

T
xt

j

j

(
T

(−1)xt

i

i − I
) 1∏

j=i−1

(
T

xt

j

j

)−1

 (60)

= I+
∑
i

(xi − xt
i)(−1)x

t

i

i−1∏
j=1

T
xt

j

j

(
T

(−1)xt

i

i − I
) 1∏

j=i−1

(
T

xt

j

j

)−1

 (61)

= I+
∑
i

(xi − xt
i)(−1)x

t

i

i−1∏
j=1

T
xt

j

j

T
(−1)xt

i

i

 1∏
j=i−1

(
T

xt

j

j

)−1

− I

 . (62)

5

In Eq. (62), we see that we have the same setting as in the special case where we started with the zero vector. There are
positive binary variables (xi−xt

i)(−1)x
t

i ∈ {0, 1} that tell us if an entry changed from the last binary vector iterate. The new
cycle that we consider can be obtained from the old ones through a conjugation:

Ci :=

i−1∏
j=1

T
xt

j

j

T
(−1)xt

i

i

 1∏
j=i−1

(
T

xt

j

j

) . (63)

Since conjugation does not change the cycle type, Ci have the same order as the Ti. If Ck, Cl are not disjoint and k, l are
indices where xt+1 differs from xt then P t+1 cannot be a permutation matrix, because in some element in the diagonal we
subtract a −2 from the identity matrix in Eq. (56).

Proof that the Parametrisation g(xt) Coincides with the Linearised Parametrisation gt(xt)

Lemma 5. Within our setting for permutation matrices if gt(xt+1) is a valid permutation matrix then gt(xt+1) = g(xt+1).

Proof. The non-linearised parametrisation of the permutation matrices starting from the previous iterate xt is according to
Lemma 2:

gt(xt+1) = Pt+1 =

k∏
i=1

T
xt+1

i

i . (64)

Using Tx
i

i = I+ xi(Ti − I) we obtain

Pt+1 =

k∏
i=1

(
I+ xt+1

i (Ti − I)
)
=

k∏
i=1

(
I+ xt

i (Ti − I) + (xt+1
i − xt

i) (Ti − I)
)
. (65)

If we factor everything out we obtain:

Pt+1 =

k∏
i=1

(
I+ xt

i (Ti − I)
)
+

k∑
i=1

(xt+1
i − xt

i)

i−1∏
j=1

(
I+ xt

j (Tj − I)
)
(Ti − I)

k∏
j=i+1

(
I+ xt

j (Tj − I)
)

+ higher order terms. (66)

This is exactly the linearised parametrisation plus some higher order terms

Pt+1 = P(xt) + ⟨∇P(xt), xt+1 − xt⟩+ higher order terms. (67)

Since we are in a setting where Pt+1 is a permutation matrix we can make use of Lemma 4. For 2-cycles this states that if
m, l are both indices where xt differs from xt thenm−1∏

j=1

T
xt

j

j

T(−1)xt

m

m

 1∏
j=m−1

(
T

xt

j

j

)−1

− I

l−1∏
j=1

T
xt

j

j

T
(−1)xt

l

l

 1∏
j=l−1

(
T

xt

j

j

)− I

 = 0. (68)

The expression on the left side can be further simplified tom−1∏
j=1

T
xt

j

j

(
T(−1)xt

m

m − I
) 1∏

j=m−1

(
T

xt

j

j

)−1

l−1∏
j=1

T
xt

j

j

(
T

(−1)xt

l

l − I
) 1∏

j=l−1

(
T

xt

j

j

)−1


=

m−1∏
j=1

T
xt

j

j

(
T(−1)xt

m

m − I
) l−1∏

j=m

T
xt

j

j

(
T

(−1)xt

l

l − I
) 1∏

j=l−1

(
T

xt

j

j

)−1

 = 0, (69)

assuming l > m. Inverting all valid permutation matrices that are multiplied to the expression from the right or left side
yields the equivalent equation (

T(−1)xt

m

m − I
) l−1∏

j=m

T
xt

j

j

(
T

(−1)xt

l

l − I
)
= 0. (70)

6

Finally, 2-cycles are their own inverse and

(Tm − I)

 l−1∏
j=m

T
xt

j

j

 (Tl − I) = 0 (71)

will result in terms of higher order in xt+1 vanishing.

D. Quadratic Assignment
n 12 14 15 16 17 18 20 21 22 24

Instances 8 2 8 13 2 4 8 1 3 1

n 25 26 27 28 30 32 35 40 50
Instances 3 8 1 1 2 3 2 1 1

Table II. QAPLIB [15] problem sizes n used in our experiments.

Details on QAPLIB results. We provide further de-
tails on the QABLIB experiment from the main text.
The number of instances per problem size is provided
in Tab. II.

For a better inspection of the results in Fig. 2, we have
sorted them by problem instances, which we display in
Tab. III. It is clear that on most instances, our method achieves the best results among the considered benchmark methods.
Noteworthy is that we could find optimal solutions on esc problem instances.

Iterative Local Search. Because our algorithm only approximates the feasible set, some feasible solutions cannot be
accessed by solving the sub-problems, which results in the fact that the algorithm may not find the absolute minimiser. We
investigate the impact of iterative local search, which consists of applying some random perturbation on the actual iterate
to get rid of local minima. First, we consider multiple restarts of the algorithm with a randomly chosen starting point. The
returned solution is the one with the lowest energy over the multiple restarts. Second, we add some noise to the iterate xt by
randomly selecting one of its entries and flipping it. This has the effect that the objective function does not monotonically
decrease any more but sometimes oscillates. The returned solution is that with the lowest energy over the iterations.

Table IV summarizes our results on 15 selected challenging QAPLIB problem instances [75]. The single restart version
with noisy iterates performs better than the compared versions. In practice, increasing the variance of the noise, that is,
the number of iterate entries getting flipped, did not improve the results that much, and a variance set too large makes the
algorithm diverge.

E. Shape Matching

Reference Q-Match Ours Q-Match Ours

Figure I. Failure shape matching results on the FAUST dataset. The
methods partially flip left and right, front and back vertices. This
particularly happens on shapes with substantial pose differences.

Failure Cases on FAUST [10]. We present failure
cases of the shape matching experiment in Fig. I. Both
Q-Match and our method difficulty register shapes with
large pose differences. In particular, they cannot fix left
and right, front and back vertices flip of the initial linear
assignment.

Experiments on TOSCA Dataset. We perform an ex-
periment on the TOSCA dataset [13]. We register all in-
stances of the cat and dog classes from the dataset.

In the inter-class registration, the source is a cat shape
and the targets are dog shapes. Some qualitative results, in line with FAUST results, are presented in Figs. IIa and IIb. On
the TOSCA dataset also the methods are non-robust to symmetry flips. We observed failure cases where left and right (e.g.
left paw registered to right one), front and back (e.g. tail registered to head), were flipped, and vice versa.

F. Point Set Registration on D-Wave
We performed point-set registration on D-Wave’s quantum annealer (precisely on the Advantage system, see Sec. 7.4 for the
specifics) for n = 3, 5, 7, 10 points per set. Our results are reported in Fig. III. Up to n = 5 and occasionally for n = 7, the
quantum annealer is able to successfully register the points, and show more difficulties for larger n.

7

nug12 nug14 nug15 nug16a nug16b nug17 nug18 nug20 nug21 nug22 nug24 nug25 nug27 nug28 nug30

Optimal 578 1014 1150 1610 1240 1732 1930 2570 2438 3596 3488 3744 5234 5166 6124
Ours 612 1048 1196 1676 1262 1758 1992 2614 2554 3678 3504 3802 5368 5336 6222
Q-Match 608 1028 1182 1640 1264 1816 2014 2650 2574 3682 3608 3966 5486 5342 6408
FAQ 596 1054 1186 1660 1282 1742 1946 2604 2580 3632 3500 3770 5326 5284 6230
2-OPT 620 1040 1216 1704 1288 1870 2004 2738 2526 3842 3658 3866 5544 5316 6416

(a) Results on QAPLIB instances in Ref. [57].

chr12c chr12b chr12a chr15c chr15a chr15b chr18a chr18b chr20c chr20b chr20a chr22b chr22a chr25a

Optimal 11156 9742 9552 9504 9896 7990 11098 1534 14142 2298 2192 6194 6156 3796
Ours 12978 11978 10214 13194 13486 10152 15338 1534 16288 2446 2456 6510 6376 4796
Q-Match 13846 11768 9916 12646 12206 11466 14466 1574 25736 3202 3026 6838 6880 4690
FAQ 13088 10468 33082 16884 19852 9112 15440 1712 19836 3206 3166 8582 8920 6744
2-OPT 14636 16748 11370 18634 14234 9404 20960 1710 28800 3616 3918 6810 7114 5502

(b) Results on QAPLIB instances in Ref. [17].

rou12 rou15 esc16h esc16i esc16b esc16c esc16d esc16j esc16e esc16a esc16f esc16g rou20 esc32e esc32g

Optimal 235528 354210 996 14 292 160 16 8 28 68 0 26 725522 2 6
Ours 246244 368728 996 14 292 160 16 8 28 68 0 26 740520 2 6
Q-Match 241844 382094 996 14 292 160 16 8 28 68 0 26 762868 2 6
FAQ 245168 371458 1518 14 320 168 62 8 30 70 0 30 743884 2 10
2-OPT 242552 369238 996 14 292 162 16 12 30 68 0 36 785088 2 6

(c) Results on QAPLIB instances in Ref. [26, 66].

tai12a had12 had14 tai15b tai15a had16 tai17a had18 tai20a had20 tai25a tai30a tai35a tai35b tai40a

Optimal 224416 1652 2724 51765268 388214 3720 491812 5358 703482 6922 1167256 1818146 2422002 283315445 3139370
Ours 230704 1674 2730 51884360 402384 3740 512198 5432 730642 7004 1222504 1874474 2514120 296071765 3257058
Q-Match 233040 1672 2764 52057859 404700 3720 507218 5400 742112 6930 1222290 1891140 2567762 287049669 3291870
FAQ 244672 1674 2724 52028170 397376 3736 520696 5416 736140 6980 1219484 1858536 2460940 306237113 3227612
2-OPT 246310 1694 2742 51934163 412300 3750 523148 5394 728652 7016 1216938 1888344 2525772 305864564 3340968

(d) Results on QAPLIB instances in Ref. [34, 72, 73].

scr12 scr15 scr20 bur26f bur26a bur26d bur26h bur26g bur26e bur26b bur26c kra32 wil50

Optimal 31410 51140 110030 3782044 5426670 3821225 7098658 10117172 5386879 3817852 5426795 88700 48816
Ours 32696 54926 111286 3807270 5446264 3821372 7131335 10143927 5388824 3825928 5430040 90860 49272
Q-Match 32758 54684 120824 3815606 5444250 3836955 7099875 10121633 5399286 3843293 5427426 94760 49900
FAQ 40758 53114 127150 3784562 5436776 3822209 7121503 10142604 5398837 3827015 5435069 92930 49126
2-OPT 31884 57134 118994 3793300 5445951 3823900 7145161 10121687 5433798 3844335 5442586 94360 49194

(e) Results on QAPLIB instances in Ref. [14, 42, 67, 76].

Table III. QAP results on the QAPLIB dataset sorted by instances. The optimal solution and the best solution among the four benchmark
methods in rendered in bold. Our method achieves the best solution most frequently on several problem instances: “chr”, “esc”, “tai” and
“bur”. In particular, we also achieve optimal solutions on “esc” problem instances. As reported in Ref. [6], Q-Match performs particularly
well on “esc” and “had” instances.

G. Annealing and Embedding on D-Wave
Annealing Process on D-Wave. Programming on D-Wave machines requires defining couplers and biases of the problem
and sending them to a quantum processing system. The quantum processor creates a network of logical variables according
to the problem size, which is minor-embedded in the quantum hardware. The network starts in a global superposition of all
possible basis states. During the quantum annealing, the provided couplers and biases are changed into magnetic fields that
deform the state landscape, emphasising the state that is most likely the solution to the underlying optimisation problem.

Minor Embedding. In most cases, our problems result in fully connected logical variables graphs. Embedding of the
logical problem onto the quantum hardware often faces the sparse variable connectivity problem. In order to create non-
existing physical connections, the QPU chains a set of physical variables by setting the strength of their connecting couplers
high enough to correlate them.

Fig. IV displays the the embedding on D-Wave of QAP for n = 5, 10, 15, as well as the histograms of the sampled
energies. Images are obtained from the D-Wave Leap problem inspector. For small n, the histogram looks like a Boltz-
mann distribution concentrated around the lowest energy. This indicates the confidence of the annealer in the solution

8

Number of restarts
Problem Optimal 50 w/o noise 1 with noise 1 w/o noise
1 chr12c 11156 11566 12470 11566
2 rou12 235528 240664 238954 245208
3 tai15a 388214 393476 400892 394642
4 chr15a 9896 11052 11562 12682
5 chr15c 9504 11758 12980 11212
6 rou15 354210 367812 364192 373132
7 esc16b 292 292 292 292
8 tai17a 491812 503140 508222 509066
9 rou20 725522 746180 734720 751658
10 chr20b 2298 2688 2764 2518
11 tai20a 703482 738124 733400 740484
12 chr22b 6194 6828 6506 6518
13 tai30a 1818146 1896112 1887748 1879078
14 tai35a 2422002 2537102 2483626 2524962
15 tai40a 3139370 3277944 3264446 3277034

Table IV. Randomness analysis of our algorithm on a 15 selected QAPLIB problems. The two digits in the problem’s name stand for the
problem size n. Compared are three variants of the algorithm: “50 w/o noise” refers to 50 restarts of the algorithm with different, random
starting points and no noise added to the iterates; “1 with noise” refers to a single restart of the algorithm with x0 = 0 and noise added to
the iterates; and “1 w/o noise” refers to the standard, single restart of the algorithm with x0 = 0 and no noise added to the iterates. The
optimal solution and the best solution among the benchmark variants are rendered in bold. The “50 w/o noise” variant of the algorithm
performs only slightly better than the standard run, returning five times the lowest energy compared to four for the standard version. On the
other hand, a single restart with noise added to the iterates often performs better than the two other alternatives, returning 8× the lowest
energy.

R
ef
er
en
ce

O
u
rs

Q
-M

at
ch

(a) Intra-classses

R
ef
er
en
ce

O
u
rs

Q
-M

at
ch

(b) Inter-classses

Figure II. Shape matching registration results on the TOSCA dataset [13].

proposal. For larger n, the histogram is uniformly distributed over several different energy values. This is principally due
to long chains, which result in chain breakages. When this happens, the several physical variables in the chain, supposed
to represent the same logical variable, get discordant spin configurations, which disturb the overall energy of the system.

3 5 7 9 12 15
n

0

500

1000

1500

n x n
k
k Target

Figure V. Comparing the problem dimension n × n, the number of
logical variable k = n(n − 1)/2 of our problem modelling and the
number of corresponding target variables “k Target” allocated on the
D-Wave machine for different n on QAP.

We tried setting the chain strength higher to avoid chain
breakages. While this successfully eliminates chain
breakages, we observed that it worsened the overall re-
sult of the algorithm.

Fig. V presents, for QAP problem instances, the
growth of the number of logical and physically allocated
variables as a function of the problem size n. The num-
ber of allocated physical variables is about ten times the
number of logical variables.

9

n = 3 n = 5 n = 7 n = 10

In
iti

al
Ou

rs
 Q

A
Ou

rs
 S

A

(a) 2D

n = 3 n = 5 n = 7 n = 10

In
iti

al
Ou

rs
 Q

A
Ou

rs
 S

A

(b) 3D

Figure III. Point set registration results computed on D-Wave. Shaded shapes were added for visualisation purposes only. Corresponding
points have the same colours, while reference points are marked by squares and template points by crosses. The quantum annealer can
register up to n = 5 points. From n = 7, the quantum annealer can partially recover correct point assignments but fails to perfectly register
the points.

Logical graph Physical graph Energy histogram

n
=

5
1
0
lg
.
&

1
8
p
h
s.

q
u
b
it
s

n
=

1
0

45
lg
.
&

27
4
p
h
s.

q
u
b
it
s

n
=

15
10

5
lg
.
&

1
52

8
p
h
s.

q
u
b
it
s

Figure IV. Minor embeddings of QAP on D-Wave for n = 5, 10 and 15. The first column shows the logical graph of the problem, the
second one visualises the physical embedding of the logical graph, and the third one is the histogram of the returned samples.

10

