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In this document we provide the following supplementary contents: 
 

• Video demonstration of MIMO. 

• Details of structured motion code. 

• Details of network architectures.  

• Target body shape adaptation. 

• Long video generation. 

• Results of controllable character video synthesis. 

• Comparisons with SOTA methods.  

• Limitations and future work.  

 
 

1. Video demonstration of MIMO 
We provide a video demonstration (file '6054_video.mp4') for MIMO, showcasing the task definition, motivation, 

and applications, as well as additional comparison results. 
 

Task. MIMO is a novel framework for synthesizing realistic character videos with controllable attributes (i.e., 
character, motion and scene) provided by simple user inputs. Given a single reference image of character, it can 
generate animated avatars in driving 3D poses retrieved from motion datasets or extracted from in-the-wild videos. 
Real-world scenes from driving videos can also be integrated into the synthesis with natural human-object interactions, 
thus enabling a brand-new task of video character replacement.  
 

Motivation. Previous 3D works typically require multi-view captures for per-case training, and 2D methods only 
allows for character animation in simple motions. In contrast, we present MIMO as a pretrained, generalizable model 
to simultaneously achieve advanced scalability to arbitrary characters, generality to novel 3D motions, and 
applicability to interactive real-world scenes in a unified framework.  
 

Applications. We present controllable results of our method with arbitrary characters, novel 3D motions and 
interactive scenes. It covers diverse applications including original character animation and the new task of video 
character replacement.  
 

Comparisons. We provide more video results for visual comparison with state-of-the-art methods: Animate Anyone 
[1], Mimic-Motion [2] and Champ [3].  
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2. Details of structured motion code.  
As shown in Figure 1, we define a set of latent codes 𝒵 = {𝓏!, 𝓏", … , 𝓏#$%&}, 𝓏' ∈ ℝ!×) , and anchor them to 

corresponding vertices of a deformable human body model (SMPL) to obtain the structured body codes. For each 
frame 𝑡, SMPL parameters 𝒮* and camera parameters 𝒞* are estimated from the human frame via a 3D human pose 
parser [4]. Then the spatial locations of the body codes are transformed to posed ones based on the 𝒮*. Using the 
differentiable rasterizer [5] with vertex interpolation, the body codes can be projected to the 2D plane based on the 
camera setting 𝒞*, thus obtaining the pose feature map ℱ* ∈ ℝ+×,×). The sequences {𝐹* , 𝑡 = 1,… ,𝑁} will be stacked 
along the time axis and fed into the pose encoder ℰ- to obtain the motion code 𝒞./.   
 

 
Figure 1: The	visualized	flowchart	of	structured	motion	code. 

 
 
 

3. Details of network architectures.  

3.1. Pose, identity and scene encoders 

The pose encoder consists of 3D convolution and SiLU in each layer to efficiently process temporal feature maps, 
whose architecture is described in Table 1. 
 

Table 1: Architecture of the pose encoder. Each layer consists of 3D convolution and SiLU.  
 

 Layer Description  Output Dim. 
 Input volume N × γ × T × H ×W 
1 Conv3D + SiLU (3×3 kernel, 16 features, stride 1)  N × 16 × T × H ×W 
2 Conv3D + SiLU (3×3 kernel, 16 features, stride 1) N × 16 × T × H ×W 
3 Conv3D + SiLU (3×3 kernel, 32 features, stride 2) N × 32 × T × H/2 ×W/2 
4 Conv3D + SiLU (3×3 kernel, 32 features, stride 1) N × 32 × T × H/2 ×W/2 
5 Conv3D + SiLU (3×3 kernel, 96 features, stride 2) N × 96 × T × H/4 ×W/4 
6 Conv3D + SiLU (3×3 kernel, 96 features, stride 1) N × 96 × T × H/4 ×W/4 
7 Conv3D + SiLU (3×3 kernel, 256 features, stride 2) N × 256 × T × H/8 ×W/8 
8 Conv3D + SiLU (3×3 kernel, 320 features, stride 1) N × 320 × T × H/8 ×W/8 

 
 
For identity encoding, inspired by [1,3], we employ a CLIP image encoder and a reference-net architecture to embed 

for the global and local feature, respectively. The detailed architectures can be found in their released implements. 
For the scene and occlusion encoding, we use a shared and frozen VAE encoder to faithfully extract their latent 

codes. The detailed architecture of VAE encoder and parameter weights can be found in pretrained SD 1.5 [6]. 
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3.2. Conditional diffusion-based decoder 

We adopt a denoising U-Net backbone built upon Stable Diffusion (SD) [6] with temporal layers from [7] to 
simulate the denoising process in the latent space, and a VAE decoder [8] to convert the denoised result into the video 
clip. The details of conditional code insertion are shown in Table 2. The full scene code is concatenated with the latent 
noise, and is fed into a 3D convolution layer for fusion and alignment. The motion code is added to the fused feature 
and input to the denoising U-Net. For identity code, its local feature and global feature are inserted into the U-Net via 
self-attention layers and cross-attention layers, respectively, following the implement in [1].  
 
 

Table 2: Architecture of the conditional diffusion-based decoder.  
 

 Operation Output Dim. 
1 Input: Full scene code N × 8 × T × H/8 ×W/8 
2 Input: Noise  N × 4 × T × H/8 ×W/8 
3 Feature concatenation N × 12 × T × H/8 ×W/8 
4 Conv3D (3×3 kernel, 320 features, stride 1) N × 320 × T × H/8 ×W/8 
5 Input: Motion code N × 320 × T × H/8 ×W/8 
6 Feature addition N × 320 × T × H/8 ×W/8 
7 Input: Identity code N × 768 (clip); stacked U-Net block output (refer-net) 
8 Denoising U-Net blocks N × 4 × T × H/8 ×W/8 
9 VAE decoding N × 3 × T × H ×W 

 
 

4. Target body shape adaptation 
With the help of the parametric body model SMPL equipped with decoupled pose and shape parameters, our method 

can easily adjust the motion representation to adapt target characters with various body shapes. For extreme shapes, 
the shape parameter 𝛽 can be extracted from the reference image via existing human reconstruction method, and is 
combined with pose parameters 𝒮*  to compute transformed vertices positions in Figure 1, thus obtaining adapted 
motion code aligning to the target character.  In this way, even extremely different body shapes can be faithfully 
preserved during the synthesis process. Animation results for characters with significantly different shapes are shown 
in Figure 2.  
 

 
Figure 2: Results	of	diverse	characters	with	significantly different shapes.  

 
 

5. Long video generation 
With 24-frame video clip for training, our model generates long videos with arbitrary length in an inter-clip fusion 

manner. We use an overlay of 4-frame for clip inference and fusion. Specifically, when inferring a video clip, the first 
4 frames of current clip are succeeded from the last 4 frames of the previous clip, and combined with subsequent 20 
frames as the input. For each denoising step, the intermediate results of the last 4 frames from the previous clip are 
overlayed onto the current frames, thus allowing for smooth transitions. Thanks to spatial decomposed modeling and 
effective controls in appearance and motion, our model can synthesize faithful character with stable scene across 
multiple clips to some extent. But it is worthy of noting that the long-term temporal consistency is not the primary 
focus of our work and still requires further exploration for better results. 
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6. Results of controllable character video synthesis 
With the controllable character video synthesis framework in advanced capabilities for arbitrary characters, novel 

3D motions and interactive scenes, MIMO enables not only more realistic results for original character animation, but 
also a brand-new task of video character replacement. The frame results are shown in Figure 3 and Figure 4. 
 
 

 
 

Figure 3: Results	of	character	animation	with	arbitrary	characters	and	novel	3D	motions.		
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Figure 4: Results	of	video	character	replacement	by	extracting	motion	and	scene	attributes	from	the	driving	video.	
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7. Comparisons with state-of-the-art methods 
More frame results for clearer comparison are shown in Figure 5. 
 

 
                       Reference         Animate Anyone       Mimic-Motion             Champ                       Ours                Target Frame 

Figure 5: Comparison	with	state-of-the-art	methods:	Animate	Anyone	[1],	Mimic-Motion	[2]	and	Champ	[3].		
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Considering insufficient scene modeling of previous methods, we also provide additional quantitative comparison by 
removing background and object for only character synthesis in Table 3. 
	
 

Table 3: Additional quantitative comparison for only character synthesis.  
	

Method PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓ 
Animate Anyone 22.604 0.763↑ 0.182 184.7 
Mimic-Motion 22.836 0.752 0.224 162.8 

Champ 23.163 0.814 0.237 221.5 
Ours 25.891 0.897 0.121 125.2 

	
	
	
	

8. Limitations and future work 
Our method offers easy user control by accepting a single image for character reference. While our model can 

generate realistic 3600 views with inter-frame consistency, it struggles to maintain consistent complex texture patterns 
on the human back over long-term intervals, particularly during re-appearances after disappearing (see Figure 6 (a, b)). 
This issue arises from limited long-term memory and single-view input with only frontal observation. Actually, our 
framework could be easily adapted to accommodate multi-view inputs for appearance encoding, potentially resolving 
the issue by providing multi-view references such as frontal and posterior images. Alternatively, exploring long-term 
memory for generative models could also address this problem and holds significant research value for further works.  

 

We applied SMPL, a deformable human body model, for 3D motion representation in character video synthesis. 
Extending the unified motion representations (e.g., 3D tracking points, 3D flow for objects) could open up new 
possibilities for common object animation and editing in other applications. 
 
 

 
Figure 6: The	failure	case	of	inconsistent	complex	texture	patterns	on	the	human	back	over	re-appearances	after	
disappearing.	
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