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1. NeRF Pipeline

This section provides an in-depth, comprehensive review of
the NeRF training pipeline. We provide a detailed explana-
tion of how machine learning models can optimize a contin-
uous volumentric scene function to synthesize novel views
of complex scenes.

NeRF take multiple 2D images as input with their re-
spective locations from where the image was taken from the
camera (hence, 5D data) to render a 3D volumetric model.
The model is trained using the following pipeline, which we
break into five steps:
1. Fetching the Light Rays: In computer vision, the 3D

coordinate of a camera is stored in the form of the loca-
tion (x, y, z) and direction (θ, ϕ). Then, rays are formed
based on the image size, denoted ro ∈ R3 (ray ori-
gin/camera center) and rd ∈ R3 (ray direction). This
is done in 2 stages:
(a) Conversion from pixel to camera: Every

image pixel indices (i, j) is converted into
( i−w/2

f , i−h/2
f ,−1), where w and h are the width

and height of the image respectively and f is the
focal length of the camera. In the z-axis, we use -1
to denote the OpenGL convention.

(b) Conversion from camera to world: Following
the pixel-to-camera transformation, all pixel values
undergo a linear transformation using the rotation
component R of the extrinsic matrix to compute rd,
while ro is derived from the translation component
t of the extrinsic matrix, represented as [R | t].

2. Sampling the Rays: After the rays are generated, they
are broken down into small chunks. The model learns
the color and density of each small chunk rather than
the whole ray. Each chunk’s color and density can later
be synthesized into the color along the ray. I.e., the ray
segment becomes rt = ro + tird, where ti ∼ U [tn +
i
N (tf − tn), tn + i+1

N (tf − tn)].
3. Positional Encoding: The individual ray chunk

coordinates are encoded into an accumulation of
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[sin (20πp), cos (20πp), ..., sin (2Lπp), cos (2Lπp)],
where p is the value given to the ray chunk after
segmenting the ray. Experimental results revealed that
the best values for location coordinates are L = 4 and
L = 10 for directional coordinates. This helps the
model to uniquely represent the color and density based
on the input chunk value the model was queried with.

4. Deep Learning Model: The model consists of 8 fully
connected layers, each with ReLU activation and 256
channels, where the positionally encoded 3D coordi-
nate (x, y, z) is processed. This generates a volume
density, σ, and a 256-dimensional feature vector. This
feature vector is then concatenated with the position-
ally encoded camera ray’s viewing direction and passed
through an additional 128 channel fully connected layer
with ReLU activation, producing the view-dependent
RGB color, c.

5. Volumetric Rendering: The rendering model com-
prises multiple functions aggregated together to generate
our final scene. The predicted color is a function of the
camera’s ray r(t) that is input into the σ. The function
T (t) denotes the likelihood that the ray will be trans-
mitted from tn to t without colliding with another ren-
dered particle. Like the ray, the transmittance T is bro-
ken down into N evenly spaced bins partitioned from
[tn, tf ]. The function then aggregates these partitioned
bins back into the full transmittance. The function then
uses the sum to estimate the continuous integral C(r).

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t), d)dt, (1)

where T (t) = exp
(
−
∫ t

tn
σ(r(s))ds

)
.

The estimated color takes in the continuous integral
while using δi, the distance between consecutive sam-
ples along the ray, in the exponential term exp(-σiδi) to
calculate the attenuation of the ray as it travels.

Ĉ(r) =

N∑
i=1

Ti (1− exp(−σiδi)) ci (2)
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where Ti = exp
(
−
∑i−1

j=1 σjδj

)
.

Using the following pipeline, two different NeRF
models are trained—a coarse and a fine network—which
is distinguishable based on the amount of sampling done
on the rays. The coarse model captures general color
and intensity across broader regions, providing a rough
approximation. In contrast, the fine model focuses on
a refined subset of samples, allowing it to learn finer
details and subtle variations in color and intensity within
the smaller chunks. This combination enhances the
model’s ability to represent complex scene details with
high fidelity. Finally, after the volumetric rendering,
we get the learned image from that particular coordi-
nate. We then use the generated 2D image against the
ground truth image to calculate the Mean Squared Error
(MSE) Loss. Mathematically, the loss function is as follows

L =
∑
r∈R

[∥Ĉc(r)− C(r)∥22 + ∥Ĉf (r)− C(r)∥22] (3)

for all the accumulation of rays as R where Cc(r) is the
output from the coarse NeRF model and Cf (r) is the output
for the fine NeRF model.

2. Additional Experiments
Here, we present additional experimental results that ex-
pand on our findings presented in the main experiments sec-
tion. Our findings here feature results on the GNT model
[14] from varying the perturbation factor ϵ on the LLFF
dataset [10], varying ϵ for IBRNet on DeepVoxels [13], and
numerous figures.

Variable Epsilon GNT, LLFF In the main experiments
section, we report metrics from running NeRFool and IL2-
NeRF on LLFF for both the IBRNet and GNT models. On
IL2-NeRF, we vary the perturbation factor ϵ from 8 to 256
for IBRNet and fix ϵ to 256 for GNT. Here, Tables 1, 2, and
3 present results for varying ϵ on GNT.

Table 1 shows the PSNR value of NeRFool against IL2-
NeRF on all eight scenes from the LLFF dataset. Once we
reach ϵ = 256, the PSNR of IL2-NeRF is lower than NeR-
Fool on all eight scenes for GNT, achieving a PSNR that is
on average 1.378 lower. This outperforms results on IBR-
Net, where IL2-NeRF at ϵ = 256 achieved a lower PSNR
on five out of eight scenes for IBRNet.

Table 2 gives the SSIM value of NeRFool against IL2-
NeRF on all eight scenes from the LLFF dataset. At ϵ =
128, IL2-NeRF achieves a lower SSIM on GNT across five
scenes than NeRFool ϵ = 8. Again, IL2-NeRF performs
better on GNT than IBRNet, as IL2-NeRF on IBRNet at
ϵ = 256 achieves a lower SSIM on only two scenes.

Table 3 reports the LPIPS value of NeRFool against IL2-
NeRF on all eight scenes from the LLFF dataset. Starting
at ϵ = 128, IL2-NeRF achieves a higher LPIPS across all

scenes on GNT when compared to NeRFool ϵ = 8. This
trend remains for our different model, where IL2-NeRF ϵ =
128 again achieves a higher LPIPS on all scenes on IBRNet.

Overall, for LLFF, IL2-NeRF performs better on
GNT than on IBRNet. Our conclusion is similar: IL2-
NeRF ϵ = 128 performs comparably to NeRFool ϵ = 8
on GNT, with worse average PSNR and better LPIPS. IL2-
NeRF ϵ = 256 on GNT outperforms on IBRNet, achiev-
ing lower PSNR and SSIM than NeRFool ϵ = 8 on more
scenes.

Variable Epsilon IBRNet, DeepVoxels The main exper-
iment section shows attack metrics from running NeRFool
ϵ = 8 and IL2-NeRF ϵ = 256 on both IBRNet and GNT on
the DeepVoxels dataset from fixing epsilon. Here, Tables 7,
8 and 9 expand these results by varying ϵ on IBRNet.

Table 7 reports the PSNR value from running IL2-NeRF
on all four scenes on DeepVoxels for IBRNet across five
values of ϵ. At ϵ = 256, IL2-NeRF achieves a lower PSNR
on three out of four scenes than NeRFool ϵ = 8 with an
average PSNR lower by 0.952. At ϵ = 128, IL2-NeRF is
on average still lower than NeRFool ϵ = 8 for PSNR by
0.164.

Table 8 reports SSIM for IL2-NeRF on all five values of
ϵ against NeRFool ϵ = 8 on IBRNet, DeepVoxels. At ϵ =
128, the average IL2-NeRF SSIM is lower than the average
NeRFool SSIM by a slight 0.017. IL2-NeRF outperforms
NeRFool at ϵ = 256 on all scenes, with an average SSIM
lower by 0.054.

Table 9 reports LPIPS for IL2-NeRF on all five values
of ϵ against NeRFool ϵ = 8 on IBRNet, DeepVoxels. IL2-
NeRF receives a greater or larger LPIPS across all scenes
at ϵ = 128, with an average that is greater by 0.021. This
difference becomes 0.057 at ϵ = 256.

Variable Loss Weights IBRNet, LLFF We used a
weighted sum of eight total losses: coarse RGB, fine RGB,
density, depth variable, depth difference, depth consistency,
depth smoothness, and multi-view consistency, which pro-
vides gradient direction for the perturbation term to target
all factors in reconstructive accuracy.

In the main experiments section, we report attack metrics
for running IL2-NeRF on variable ϵ and a loss combining 8
different loss functions with a fixed weight. We used the
same weights in NeRFool to maintain consistency. Here,
we include results for varying weights from IL2-NeRF on
IBRNet, LLFF outlined below:

• RGB-Loss: This is the original loss featured in the main
experiments section and in NeRFool. RGB-Loss gives
the coarse RGB and fine RGB a weight term of 1 and sets
everything else to 0.

• Density & Depth: Here, we give density and depth vari-
able loss a weight of 0.5 and maintain a weight of 1 for
both RGB losses.

• Diff & Smooth: This combination gives the depth dif-



GNT LLFF PSNR
ϵ = Fern Flower Fortress Horns Leaves Orchids Room T-Rex Avg.

NeRFool 8 14.930 15.453 14.088 14.127 13.946 12.341 13.173 12.725 13.848

IL2-NeRF

8 21.715 23.467 25.413 23.345 18.276 17.171 23.802 20.700 21.736
16 20.966 22.114 22.600 22.052 17.703 16.690 21.260 19.090 20.309
64 17.637 18.470 17.558 17.277 15.555 14.573 16.330 15.085 16.561
128 15.645 15.920 15.809 14.939 14.023 12.421 14.587 13.362 14.588
256 13.381 13.367 14.449 12.394 11.912 10.151 12.649 11.453 12.470

Table 1. PSNR of NeRFool vs. IL2-NeRF on GNT model, LLFF dataset. Note that a lower PSNR indicates a more successful attack.

GNT LLFF SSIM
ϵ = Fern Flower Fortress Horns Leaves Orchids Room T-Rex Avg.

NeRFool 8 0.470 0.513 0.461 0.540 0.390 0.328 0.623 0.520 0.481

IL2-NeRF

8 0.731 0.797 0.825 0.842 0.672 0.574 0.884 0.801 0.766
16 0.707 0.762 0.790 0.812 0.642 0.552 0.855 0.772 0.737
64 0.590 0.616 0.621 0.660 0.503 0.434 0.742 0.647 0.602

128 0.385 0.481 0.504 0.538 0.370 0.311 0.656 0.538 0.473
256 0.353 0.307 0.388 0.356 0.180 0.144 0.545 0.365 0.330

Table 2. SSIM of NeRFool vs. IL2-NeRF on GNT model, LLFF dataset. Note that a lower SSIM indicates a more successful attack.

GNT LLFF LPIPS
ϵ = Fern Flower Fortress Horns Leaves Orchids Room T-Rex Avg.

NeRFool 8 0.374 0.339 0.388 0.359 0.369 0.421 0.352 0.388 0.374

IL2-NeRF

8 0.203 0.145 0.150 0.150 0.217 0.268 0.141 0.191 0.183
16 0.221 0.170 0.177 0.174 0.234 0.281 0.170 0.214 0.205
64 0.306 0.271 0.319 0.289 0.314 0.359 0.274 0.311 0.305

128 0.488 0.366 0.407 0.377 0.395 0.448 0.353 0.392 0.403
256 0.483 0.484 0.469 0.500 0.499 0.560 0.448 0.506 0.494

Table 3. LPIPS of NeRFool vs. IL2-NeRF on GNT model, LLFF dataset. Note that a higher LPIPS indicates a more successful attack.

IBRNet LLFF PSNR
Weights ϵ = Fern Flower Fortress Horns Leaves Orchids Room T-Rex Avg.

RGB-Loss

8 21.581 25.214 24.605 22.967 18.696 17.960 24.172 20.188 21.923
16 20.590 24.296 21.652 21.458 18.450 17.438 21.071 18.355 20.414
64 16.825 17.852 15.862 15.742 16.740 14.030 16.120 14.240 15.926

128 14.900 15.220 14.299 13.945 14.708 11.950 13.837 12.731 13.949
256 13.020 13.193 13.462 12.028 12.212 9.920 12.518 11.485 12.230

Density & Depth

8 22.113 25.805 27.834 24.325 18.999 18.343 28.296 22.701 23.552
16 21.996 25.654 27.498 24.179 18.945 18.326 27.947 22.432 23.372
64 21.431 25.128 26.456 23.448 18.856 18.044 26.731 21.884 22.747

128 20.764 24.434 25.450 22.660 18.543 17.500 25.081 21.127 21.945
256 19.846 22.212 23.158 20.772 17.495 16.016 23.337 19.560 20.300

Diff & Smooth

8 21.939 25.610 26.982 24.090 18.980 18.255 27.518 22.042 23.177
16 21.600 25.149 25.888 23.537 18.893 18.050 26.522 21.624 22.658
64 19.869 22.347 23.898 20.974 17.873 16.307 23.866 20.244 20.672

128 18.996 19.913 22.084 20.117 17.267 14.857 22.226 19.155 19.327
256 18.247 18.120 20.767 18.643 16.741 13.614 21.123 18.108 18.170

Table 4. PSNR of IL2-NeRF on IBRNet model, LLFF dataset on different combinations of summed loss weights. Note that a lower PSNR
indicates a more successful attack.

ference, depth smoothness and depth variable losses a
weight of 0.2, density loss weight 0.4, and both RGB
losses 1.

Table 4 reports the PSNR value from running IL2-NeRF

on variable ϵ across all three weight combinations. On all
scenes, RGB-Loss obtains a lower PSNR than Density &
Depth and Diff & Smooth. On average, RGB-Loss outper-
forms both Density & Depth and Diff & Smooth at every



IBRNet LLFF SSIM
Weights ϵ = Fern Flower Fortress Horns Leaves Orchids Room T-Rex Avg.

RGB-Loss

8 0.694 0.836 0.790 0.809 0.641 0.565 0.908 0.792 0.754
16 0.670 0.825 0.740 0.784 0.631 0.548 0.881 0.767 0.731
64 0.564 0.705 0.570 0.635 0.551 0.426 0.764 0.656 0.609

128 0.485 0.579 0.487 0.516 0.442 0.320 0.686 0.567 0.510
256 0.405 0.435 0.451 0.390 0.271 0.184 0.616 0.437 0.399

Density & Depth

8 0.706 0.843 0.819 0.824 0.650 0.576 0.929 0.812 0.770
16 0.700 0.840 0.801 0.817 0.649 0.574 0.924 0.805 0.764
64 0.659 0.814 0.708 0.758 0.630 0.545 0.896 0.765 0.722

128 0.618 0.777 0.643 0.700 0.588 0.497 0.855 0.715 0.674
256 0.563 0.691 0.578 0.602 0.488 0.398 0.805 0.623 0.593

Diff & Smooth

8 0.698 0.840 0.785 0.817 0.650 0.571 0.919 0.801 0.760
16 0.682 0.828 0.739 0.794 0.642 0.558 0.905 0.784 0.742
64 0.599 0.748 0.628 0.677 0.555 0.459 0.833 0.688 0.648

128 0.547 0.663 0.569 0.602 0.493 0.368 0.784 0.613 0.580
256 0.496 0.564 0.527 0.520 0.432 0.277 0.736 0.532 0.510

Table 5. SSIM of IL2-NeRF on IBRNet model, LLFF dataset on different combinations of summed loss weights. Note that a lower SSIM
indicates a more successful attack.

IBRNet LLFF LPIPS
Weights ϵ = Fern Flower Fortress Horns Leaves Orchids Room T-Rex Avg.

RGB-Loss

8 0.299 0.180 0.232 0.236 0.272 0.347 0.199 0.305 0.259
16 0.326 0.193 0.281 0.263 0.280 0.360 0.233 0.330 0.283
64 0.430 0.322 0.444 0.404 0.346 0.476 0.374 0.425 0.403

128 0.510 0.440 0.510 0.505 0.432 0.576 0.466 0.499 0.492
256 0.578 0.550 0.538 0.596 0.556 0.690 0.534 0.587 0.579

Density & Depth

8 0.292 0.175 0.214 0.224 0.267 0.340 0.179 0.287 0.247
16 0.303 0.181 0.237 0.235 0.268 0.345 0.191 0.296 0.257
64 0.370 0.220 0.339 0.310 0.292 0.382 0.255 0.349 0.315

128 0.426 0.267 0.404 0.376 0.338 0.436 0.331 0.405 0.373
256 0.488 0.360 0.461 0.470 0.433 0.534 0.409 0.490 0.455

Diff & Smooth

8 0.306 0.181 0.250 0.237 0.269 0.349 0.200 0.304 0.262
16 0.335 0.198 0.297 0.266 0.280 0.364 0.231 0.328 0.287
64 0.434 0.287 0.391 0.384 0.363 0.467 0.349 0.421 0.387

128 0.485 0.373 0.432 0.453 0.418 0.549 0.412 0.481 0.450
256 0.523 0.456 0.462 0.516 0.467 0.622 0.467 0.537 0.506

Table 6. LPIPS of IL2-NeRF on IBRNet model, LLFF dataset on different combinations of summed loss weights. Note that a higher LPIPS
indicates a more successful attack.

IBRNet DeepVoxels PSNR
ϵ = Armchair Cube Greek Vase Avg.

NeRFool 8 9.500 13.982 11.688 11.437 11.652

IL2-NeRF

8 26.021 24.129 24.177 24.053 24.595
16 16.594 20.286 17.644 20.118 18.661
64 12.276 14.846 13.449 12.167 13.185
128 9.754 12.968 12.391 10.840 11.488
256 8.660 11.829 12.067 10.235 10.700

Table 7. PSNR of NeRFool vs. IL2-NeRF on IBRNet, DeepVox-
els dataset. Note that a lower PSNR indicates a more successful
attack.

ϵ.

Table 5 reports the SSIM value from running IL2-NeRF
on variable ϵ across all three weight combinations. RGB-

IBRNet DeepVoxels SSIM
ϵ = Armchair Cube Greek Vase Avg.

NeRFool 8 0.760 0.668 0.772 0.761 0.745

IL2-NeRF

8 0.971 0.936 0.953 0.933 0.948
16 0.938 0.892 0.914 0.902 0.912
64 0.855 0.729 0.820 0.790 0.799
128 0.779 0.626 0.781 0.725 0.728
256 0.728 0.591 0.760 0.684 0.691

Table 8. SSIM of NeRFool vs. IL2-NeRF on IBRNet, DeepVoxels
dataset. Note that a lower SSIM indicates a more successful attack.

Loss achieves a lower average SSIM than both Density &
Depth and Diff & Smooth at every ϵ. RGB-Loss also out-
performs Density & Depth and Diff & Smooth on all scenes
except Fortress at ϵ = 8, 16.
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Figure 1. Visual comparing predicted images on four LLFF scenes from IBRNet and GNT on NeRFool and IL2-NeRF perturbed images
on varying perturbation factors ϵ.

Table 6 reports the LPIPS value from running IL2-NeRF
on variable ϵ across all three weight combinations. Here,
Diff & Smooth achieves the highest average LPIPS across
all scenes on ϵ = 8, 16 and RGB-Loss achieves the highest
average LPIPS on ϵ = 64, 128, 256.

Overall, the original RGB-Loss results in the best attack
metrics. We acknowledge there is future work in experi-
menting further with these loss weights and designing a loss
that outperforms RGB-Loss for attacks on GNeRFs.

Visualizing Perturbations under L∞ and L2 Norms



IBRNet DeepVoxels LPIPS
ϵ = Armchair Cube Greek Vase Avg.

NeRFool 8 0.303 0.285 0.291 0.231 0.278

IL2-NeRF

8 0.072 0.054 0.068 0.084 0.070
16 0.124 0.095 0.121 0.111 0.113
64 0.226 0.234 0.251 0.217 0.232
128 0.303 0.332 0.296 0.265 0.299
256 0.360 0.373 0.314 0.291 0.335

Table 9. LPIPS of NeRFool vs. IL2-NeRF on IBRNet, DeepVox-
els dataset. Note that a higher LPIPS indicates a more successful
attack.

We provide a visual for comparing the same perturbation
factor under the L∞ and L2 norm in Figure 2. L2 attacks
ensure uniform perturbation with less sharp neighboring-
pixel differences, better resembling natural imaging arti-
facts. This is seen here, as under the same level of pertur-
bation, IL2-NeRF presents smoother visuals perturbations
across the pixels. Zooming in on the upper-right corner,
we see how distortions between the two attacks differ, with
IL2-NeRF exhibiting significantly less perceptible pertur-
bations.

Visualizing Perturbations in LLFF Predictions We
consider the immediate affects our perturbations have on
GNeRF scene generation. Figure 1 compares the predicted
images produced by IBRNet from varying ϵ. Here, we com-
pare perturbations across different architectures by plac-
ing predicted images for the same four LLFF scenes (Fern,
Flower, T-Rex, Room) for GNT and IBRNet.

Across model lines, one trend is obvious: as ϵ increases,
the number of visible distortions in our generated images
becomes more visible. However, the intensity of these dis-
tortions varies for different scenes and models. Notably,
in the Flower scene in the second row, for both NeRFool
ϵ = 8 and IL2-NeRF ϵ = 128 the image is more perturbed
for IBRNet than GNT.

Visualizing Perturbations in LLFF Depth Masks We
wish to compare differences in degradations across model
lines by considering the GNT model. Figure 3 shows the
depth mask for predicted scenes on the LLFF Orchids scene
for both models.

Interestingly, across all values of ϵ, all GNT depth masks
feature heavy artifacts on the edge of the image. This
clearly contrasts IBRNet, whose perturbations are concen-
trated around the main object. When we increase ϵ for both
models, more artifacts are added and intensified in the mid-
dle of the image. For both models, the depth mask for NeR-
Fool ϵ = 8 is most similar to IL2-NeRF at ϵ = 128.

Visualizing Perturbations in DeepVoxels Predictions
We extend our analysis on visual perturbations by con-

sidering predicted images on the DeepVoxels dataset. Fig-
ure 4 compares the predicted images produced by IBRNet
from varying ϵ across all four scenes of DeepVoxels. Each
scene is depicted from top to bottom as follows: Armchair,
Cube, Greek, and Vase. Unlike LLFF, DeepVoxels valida-
tion images consist of objects on a blank background. The

lack of background makes perturbations more apparent.
At ϵ = 8 and ϵ = 16, IL2-NeRF, the scene predictions

produce minimal distortions. These distortions are ampli-
fied at ϵ = 64: most notably, the headrest on Armchair
becomes larger, the two sides of Cube do not touch on their
corners anymore, and Vase starts to move to the left. IL2-
NeRF ϵ = 128 and 256 are most similar to NeRFool ϵ = 8,
but we notice that there are larger white blotches for NeR-
Fool, specifically in Armchair and Greek.

3. Ethical Consideration
In this section, we address any concerns about the negative
impact our work creates. As our work explores a new threat
model for GNeRF models, this paper is crucial in expand-
ing a discussion for producing more robust GNeRFs and
defensive techniques.

Neural radiance has seen success across many interdis-
ciplinary fields. In robotics, NeRF models improve nav-
igation and localization capabilities [1, 9, 11]. In au-
tonomous driving, NeRF models have added a new dimen-
sion to panoptic image segmentation for 3D object track-
ing [4, 6, 12]. In Virtual Reality (VR), NeRF allows for
real-time high-fidelity renderings of remote environments
[2, 3, 7].

As in-field systems employ NeRF models, understanding
the adversarial robustness of GNeRF models becomes cru-
cial to understanding the potential of system performance
being compromised. In general, machine learning models
are vulnerable to perturbations injected into the source im-
age [5, 8]. Discussing types of adversarial perturbations and
their effects on GNeRF robustness is necessary to create se-
cure scene-generation systems.

Our work is the first to address the performance of ad-
versarial attacks on GNeRFs in the L2 domain. The in-
ception of IL2-NeRF elevates the discussion of GNeRF ro-
bustness to Lp perturbations, where p ̸= ∞. This opens
GNeRF security research to explore defensive techniques
across different norms, which in turn produces resilient sys-
tems across different threat models and domains.

4. Open Science
We have made our repository available here. This repos-
itory contains the pipeline to run both NeRFool and IL2-
NeRF attacks on both IBRNet and GNT provided their re-
spective weights. IBRNet weights can be found here, and
GNT weights can be found here. Both the IBRNet model
code and the GNT model code are provided in our reposi-
tory [14, 15].

https://github.com/The-NRC-SCAR-Group/IL2-NeRF
https://drive.google.com/drive/folders/1I2MTWAJPCoseyaPOmRvpWkxIZq3c5lCu
https://drive.google.com/file/d/1YvOJXa5eGpKgoMYcxC2ma7prB1n5UwRn/view
https://github.com/googleinterns/IBRNet
https://github.com/googleinterns/IBRNet
https://github.com/VITA-Group/GNT


NeRFool

IL2-NeRF

Source

Figure 2. Visual comparing clean and perturbed source images from NeRFool and IL2-NeRFool ϵ = 8 on Fern, Fortress, Horns, Room and
T-Rex source images. When zooming into the right corner (these are the segmented 369× 275 images from the boxes), L∞ perturbations
produced by NeRFool produce more distorted, jagged perturbations than the L2 perturbations produced by IL2-NeRF under the same ϵ.
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