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7. Repelling Random Patches vs. Repelling
Closest Neighbor Patches

We are fully aware of the trend of employing randomly
asymmetrical masks to the input of the MAE training [18,
39]. We further evaluate the impact of incorporating the
random asymmetry while applying the proposed repelling
learning scheme (Eq. 2 and Eq. 3). Specifically, the inputs
are two sets of randomly selected patches with the same
sparsity, we compute the same repelling loss based on Eq. 2
and Eq. 3 after the default encoding and decoding.

Table 8. Performance comparison between random asymmetrical
masks and the proposed NoR-MAE.

ViT Model Method ImageNet-100 Accuracy (%)
ViT-Tiny Random Asymmetry 72.15
Neighbor Repelling (Proposed) 78.26
ViT-Small Random Asymmetry 82.04
Neighbor Repelling (Proposed) 84.28

As shown in Table 8, repelling the random information
cannot fully resolve the poor learnability of the lightweight
model. The superior accuracy of the proposed Neighbor-
Repelling scheme further proves the necessity of understand-
ing the semantic differences between different local informa-
tion (neighbor-based centroid).

8. Minimize the Distance Between Patches and
their Closest Neighbors

Although the proposed method highlights the necessity of
repelling the closest neighbor, the similarity between patches
and their closest neighbors should be ignored. Based on the
setup of the closest neighborhood patches (CNP) introduced
in Section 3.1, we perform the MAE training scheme by
minimizing the distance between the unmasked patches and
their CNP. Mathematically, we modify Eq. 2 to Neighbor
Alignment Loss (NoA):

1 A R
Lrvor = 5 2 (2~ Zow) &
N,D,K
And the total loss is:
Lioa = L2(Z,Ground Truth) + Anoa - Lnoa  (5)

Which is equivalent to minimizing the Mean Square dis-
tance between patches and their CNP. As shown in Table 9,
the performance boost with Neighbor Alignment (NoA)

Table 9. Comparison between Neighbor Repelling and Neighbor
Alignment for MAE training.

ViT Model Method ImageNet-100 Accuracy (%)
MAE [20] 71.04
ViT-Tiny Neighbor Alignment (NoA) 72.52
Neighbor Repelling (NoR) 78.26

is unsatisfactory compared to the proposed Neighbor Re-
pelling. Given that only 20% of the patches are ex-
tremely similar (similarity > 0.99) to their closest neighbor
patches (CNP) (Figure 3), minimizing the distance between
each patch and their CNP ignores the dissimilarity of the
CNP, which leads to the sub-optimal performance.

Table 10. Performance and training cost comparison between NoR-
MAE and the knowledge distillation-based MAE training (DMAE)
with the ImageNet-1K dataset (based on RTX 6000 GPU).

ViT Model Method Teacher Total GPU Memory (GB)  Time per Epoch  FT Acc. (%)
MAE [20] N/A 102 (1x) 35 min (4 GPU) 66.60
ViT-Tiny DMAE [3] VIT-B 152 (1.49 %) 43 min (4 GPU) 70.00
NoR-MAE (This work)  N/A 108 (1.08x) 36 min (4 GPU) 70.24
MAE [20] N/A 144 (1 %) 45 min (4 GPU) 79.00
ViT-Small DMAE [3] ViT-B 218 (1.5%) Ihr2min 4 GPU)  79.30
NoR-MAE (This work)  N/A 152 (1.06x) 47 min (4 GPU) 80.13

9. Training Cost of NoR-MAE

We profiled and compare the training cost of the vanilla
MAE, distillation-based DMAE, and the proposed NoR-
MAE algorithm. As shown in Table 10, the proposed method
outperforms DMAE [3] with better accuracy and 1.4 train-
ing cost reduction (memory and training time). Compared to
the vanilla MAE [20], the proposed NoR-MAE algorithm im-
prove the performance of the lightweight vision transformer
with only <8% memory and training time overhead.

Table 11. Training cost comparison between the proposed NoR-
MAE and vanilla MAE on a cloud GPU server.

ViT-Tiny Batch Size  Total GPU Memory Time / Epoch Cost / Epoch
MAE (75% Spars.) 4096 102 GB 25 min 20 sec (1.0x) 2.69 USD
MAE (50% Spars.) 4096 127 GB 33 min 07 sec (1.30x) 3.50 USD

NoR-MAE (75% Spars.) 4096 108 GB 27 min 10 sec (1.08x) 2.90 USD

To solidify resource usage, we report the model on a
leased cloud server with 2xH100 GPUs ($6.38/hour), as
shown in Table 11 above.
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Figure 9. Improved segmentation quality with the proposed NoR-
MAE algorithm.

10. NoR-MAE for Segmentation

In addition to the quantitative segmentation results reported
in Section 4, we validate the downstream performance of
the proposed NoR-MAE with qualitative demonstration with
the ADE20K dataset. We follow the default settings of
MAE [20] and employ the UperNet [35] and fine-tune the
NoR-MAE-pretrained ViT-Small model for 100 epochs.

Compared to the vanilla MAE [20], the proposed NoR-
MAE exhibits clearer segmentation among multiple objects
within the given scene, as shown in Figure 9.

11. Experimental Setup

Pretraining on the ImageNet dataset We follow the stan-
dard pre-training protocal from the vanilla MAE to initate
the pre-training of the proposed NoR-MAE on ImageNet-1K
and ImageNet-100 datasets. Specifically, we choose the de-
fault base learning rate as 1.5e-4 with weight decay = 0.05.
The vision transformer models are trained by 200 and 400
epochs (include 40 epochs of warmup) with batch size of
4096.

End-to-end Fine-tuning The end-to-end fine-tuning fol-
lows the standard supervised learning of supervised ViT
training. We use the base learning rate as le-3, with the
weight decay of 0.05. Following the setup of the vanilla
MAE [20], we employ label smoothing, mixup, and cutmix
for supervised fine-tuning.

Downstream Fine-tuning We follow the fine-tuning set-
tings in [13] and fine-tune the pre-trained model for 10,000
steps with SGD and batch size of 64. The learning rate is set
to 0.1 with no weight decay. The input samples are resized to
224 x 224 to maintain the dimensionality as the pre-trained
model.
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