
Towards Generalizable Trajectory Prediction using Dual-Level Representation
Learning and Adaptive Prompting

Supplementary Material

This supplementary document provides additional in-
sights and experiments to complement the main paper. It in-
cludes detailed explanations of the Dynamic Weighted Ag-
gregation (DWA) strategy and Prompt-Based Fine-Tuning
techniques, along with implementation specifics to en-
sure consistency in evaluating baselines. Furthermore, we
present experiments demonstrating the scalability of our
model with increasing data size in multi-dataset training and
comparing transfer learning strategies, such as prompt tun-
ing and full fine-tuning, for cross-dataset adaptation.

7. Methodology Details
7.1. Dynamic Weighted Aggregation (DWA)
To balance the six diverse losses during training, we em-
ploy a Dynamic Weighted Aggregation (DWA) strategy.
Each loss component, denoted as Li, is assigned a weight
wi that dynamically adjusts based on the relative difficulty
of the task at the current stage of training. This approach
ensures that harder tasks receive greater emphasis, enabling
balanced optimization across all objectives.

The six losses are as follows:
• Past Reconstruction Loss (Lpast): Reconstruction loss

for masked past trajectory points.
• Future Reconstruction Loss (Lfuture): Reconstruction

loss for masked future trajectory points.
• Lane Reconstruction Loss (Llane): Reconstruction loss

for masked lane polyline points.
• Prediction Loss (Lpred): Gaussian Mixture Model

(GMM)-based loss to evaluate multimodal trajectory pre-
dictions.

• Cross-Entropy SD Loss (Lcross-entropy): Aligns the stu-
dent encoder’s latent space with the teacher encoder’s out-
puts.

• KoLeo Regularization Loss (LKoLeo) [12]: This regular-
izer encourages diversity and uniformity among feature
representations within a batch. Given a set of n feature
vectors {x1, . . . , xn}, the regularizer is defined as:

LKoLeo = → 1

n

n∑

i=1

log(dn,i), (14)

where dn,i = minj →=i ↑xi → xj↑ is the minimum distance
between xi and any other feature in the batch. To en-
sure consistency and stability, all feature vectors are ω2-
normalized before computing the regularization term.
Each task’s loss is dynamically balanced using the DWA.

The smoothed loss value L̃i for each task i is computed as:

L̃i = 0.9L(t↑1)
i + 0.1L(t↑2)

i , (15)

where L(t↑1)
i and L(t↑2)

i are the loss values from the previ-
ous and second-to-last iterations, respectively. The relative
importance ratio ri for task i is then calculated as:

ri =
L̃i

L(t↑2)
i + ε

, (16)

where ε is a small constant to avoid division by zero. Using
these ratios, initial task weights wi are computed as:

wi =
n ri∑n
j=1 rj

, (17)

where n is the total number of tasks.
To account for task-specific priorities, biases are applied

to the weights, and the biased weights are clipped within
predefined bounds [wmin, wmax] to ensure stability. Finally,
the weights are normalized again to ensure their sum equals
the total number of tasks:

wi =
nwi∑n
j=1 wj

. (18)

7.2. Prompt-Based Fine-Tuning
Clustering and Prompt Selection During fine-tuning,
the clustering head, trained during pretraining, assigns each
input scene to a specific cluster. The clustering head outputs
class logits, and the cluster is identified using the argmax
operation:

cluster id = argmax(MLP(X)), (19)

where X represents the input features, and the cluster with
the highest probability is selected. Each cluster corresponds
to a unique prompt sequence pk from the prompt pool,
where k denotes the cluster index.

Prompt Initialization The prompt pool P =
[p1,p2, . . . ,pK ] consists of K learnable prompt se-
quences, one for each cluster. Each prompt sequence pk is
initialized using a uniform distribution:

pk ↓ U(→1, 1), ↔k ↗ {1, 2, . . . ,K}. (20)

This initialization ensures diversity across prompt se-
quences and avoids bias in the adaptation process.



Table 5. # Registers and Clusters vs Performance on NuScenes
Number B-FDE ↘ minADE ↘ minFDE ↘ MR ↘

Registers

0 2.71 0.98 2.06 0.37
10 2.69 0.94 2.03 0.34
26 2.67 0.94 2.02 0.34
58 2.62 0.93 1.97 0.32
74 2.67 0.93 2.03 0.34

Clusters

8 2.70 0.93 2.05 0.35
16 2.68 0.92 2.03 0.35
32 2.67 0.93 2.02 0.34
64 2.62 0.93 1.97 0.32

Integration of Prompts with Queries After selecting the
prompt sequence pcluster id based on the assigned cluster, it is
concatenated with the mode queries Qmodes and the register
queries Qreg. The combined query representation Qcombined
is expressed as:

Qcombined = Concat(Qmodes,Qreg,pcluster id), (21)

where Concat denotes concatenation along the token dimen-
sion. This combined query serves as input to the frozen Per-
ceiver decoder.

8. Implementation Details
In our implementation, the results for MTR [37] and Auto-
Bot [17] are sourced directly from the UniTraj [14] paper
for consistency and comparability. For Forecast-MAE [8],
the only SSL-based approach with publicly available code,
we adapted the implementation to the UniTraj framework
and report the results based on our experiments.

9. Additional Experiments
9.1. Role of Register Queries.
As shown in Tab. 5, increasing the number of registers
reduces B-FDE to 2.62 at 58 registers on NuScenes (NS).
Unlike mode queries, which generate specific trajectories,
register queries are not directly tied to specific outputs. In-
stead, they aggregate global and local context from agent
trajectories and road graphs, acting as memory tokens that
persist across decoder layers to refine contextual informa-
tion. This enables diverse trajectory generation without ex-
plicit mode enumeration, i.e., multi-modality. Other vari-
ants of registers [10] are known to improve performance in
other tasks.

9.2. Prompt-Based Fine-Tuning.
In Tab. 5, we observe that increasing the number of clus-
ters improves performance. Why does it work? During
pretraining, a scene clustering head (MLP) groups simi-
lar inputs by aligning student-teacher scene vectors with
cross-entropy and enhancing cluster separation with KoLeo

Figure 5. Failure Analysis (train on WOMD, eval on NS)

loss. During fine-tuning, each cluster is assigned a learn-

able prompt, and each input’s Scene Vector (SVx) is as-
signed a cluster via: pid = argmax(MLP(SVx)). This
prompt pid is concatenated with decoder queries, guiding
the model to make cluster-specific predictions while freez-
ing the core architecture.

9.3. Compute and complexity.
Our PerReg model has 19.2M parameters, with 16.7M train-
able. Due to SD and MR, it increases (pre-) training time
(compared to training) by ↓22% but reduces inference
time by ↓18% compared to (with NMS) on WOMD. Pre-
Training on 4 ! A100 GPUs with a batch size of 512 takes
↓30 minutes per epoch.

9.4. Failure Analysis.
In three cases (Fig. 5), low confidence in cluster assign-
ment (3%) results in missed trajectories. As future work, we
will explore alternative prompt aggregation methods, such
as adaptive weighting.

9.5. Scalability on Multi-Dataset Training
To evaluate the performance of our model, PerReg+, on
multi-dataset pretraining, we combine three datasets of
varying sizes and test its performance using progressively
larger subsets of the combined data. Specifically, we use
20%, 40%, 60%, 80%, and 100% of the total combined
dataset, ensuring that each subset contains equal propor-
tions from all three datasets. This setup allows us to as-
sess how the model scales with increasing data availabil-
ity while maintaining a balanced representation from each
dataset. Performance is evaluated using standard trajectory
prediction metrics across these varying dataset sizes.

Table 6 summarizes the results for each dataset and data
size. As the size of the combined dataset increases, PerReg+
consistently improves its performance across all metrics, in-
dicating effective utilization of additional data. Notably, the
performance at 100% data outperforms the 20% subset by
significant margins, particularly in B-FDE and minFDE, re-
flecting the model’s ability to generalize with larger, bal-
anced training data.

When compared to training on single datasets, multi-
dataset training with 100% data results in better perfor-
mance on nuscenes [5] and Argoverse 2 [42] across most
metrics, highlighting the benefits of diverse domain expo-
sure. For WOMD [13], results are comparable between
the single-dataset and multi-dataset approaches, suggesting



Table 6. Scalability and Performance Evaluation on Multi-Dataset Training.PerReg+’s performance is evaluated on combined datasets
using data sizes from 20% to 100%, with equal proportions from each, and compared to single-dataset training.

Data Size nuscenes Argoverse 2 WOMD

B-FDE ↘ minADE ↘ minFDE ↘ MR ↘ B-FDE ↘ minADE ↘ minFDE ↘ MR ↘ B-FDE ↘ minADE ↘ minFDE ↘ MR ↘
20% 2.43 0.88 1.80 0.28 2.31 0.86 1.71 0.27 2.28 0.86 1.65 0.26
40% 2.40 0.84 1.75 0.26 2.17 0.80 1.57 0.24 2.16 0.70 1.53 0.23
60% 2.33 0.81 1.69 0.25 2.09 0.76 1.48 0.21 2.11 0.68 1.49 0.22
80% 2.33 0.83 1.68 0.24 2.06 0.76 1.45 0.21 2.07 0.66 1.45 0.21
100% 2.28 0.79 1.64 0.25 2.02 0.74 1.41 0.19 2.04 0.65 1.42 0.20
Single dataset 2.62 0.93 1.97 0.32 2.07 0.77 1.46 0.21 2.05 0.65 1.42 0.20

Table 7. Transfer Pre-training vs. Direct Pre-training. Eval-
uation of different pretraining and fine-tuning strategies for the
model on the nuscenes dataset. Strategies include Prompt Tuning
(PT) on WOMD, nuscenes, and transfer (WOMD → nuscenes), as
well as Full Fine-tuning.

Finetuning Strategy Evaluation

B-FDE ↘ minADE ↘ minFDE ↘ MR ↘
PT (WOMD) 2.75 1.01 2.07 0.36
PT (nuscenes) 2.62 0.93 1.97 0.32
PT (WOMD ≃ nuscenes) 2.53 0.94 1.89 0.32
Full (WOMD ≃ nuscenes) 2.27 0.79 1.64 0.27

that the additional data maintains the model’s strong per-
formance. The evaluation demonstrates that multi-dataset
training improves the generalization of PerReg+, particu-
larly when leveraging the full combined dataset.

9.6. Transfer Pre-training
Table 7 compares various pretraining and fine-tuning strate-
gies on the nuscenes dataset. In all experiments, the
model is pretrained on the WOMD dataset and evaluated
on nuscenes, except for the PT nuscenes strategy, where
the model is both pretrained and fine-tuned exclusively on
nuscenes. Prompt tuning on WOMD (PT WOMD) achieves
a B-FDE of 2.75, but is outperformed by prompt tuning di-
rectly on nuscenes (PT nuscenes). Transfer learning with
prompt tuning (PT WOMD ≃ nuscenes) further improves
B-FDE, demonstrating the benefits of leveraging large-scale
WOMD pretraining. Full fine-tuning after transfer (Full
WOMD ≃ nuscenes) achieves the best results across all
metrics, highlighting the advantages of fully adapting to
the target domain. These results emphasize the importance
of combining large-scale pretraining with domain-specific
fine-tuning, where prompt tuning offers computational effi-
ciency, and full fine-tuning maximizes performance.

9.7. Decoder Freezing.
Freezing the decoder (↓67% of model params) is favor-
able because it reduces compute cost. Remarkably, in
single-dataset training, PerReg (frozen decoder + finetuned
prompts) achieves similar results to decoder finetuning (B-

FDE=2.62) despite using only a fraction of the compute
cost. Moreover, in transfer pretraining (WOMD ≃ NS),
a learnable decoder further improves performance, yet the
frozen decoder with fine-tuned prompts still outperforms

single-dataset training. Prompt fine-tuning on a frozen de-
coder enables targeted adaptation, preserving structure and
efficiency.


	Introduction
	Related Work
	Trajectory Prediction
	Self-supervised Trajectory Prediction

	Methodology
	Preliminary
	Masked Self-Distillation
	Reconstruction and Trajectory Prediction
	Loss Functions
	Fine-Tuning with Prompt-Based Clustering

	Experiments
	Experimental Setup
	Comparison with State-of-the-Art Models
	Out-of-Domain Generalization
	Ablation Study
	Qualitative Results

	Conclusion
	Acknowledgment
	Methodology Details
	Dynamic Weighted Aggregation (DWA)
	Prompt-Based Fine-Tuning

	Implementation Details
	Additional Experiments
	Role of Register Queries.
	Prompt-Based Fine-Tuning.
	Compute and complexity.
	Failure Analysis.
	Scalability on Multi-Dataset Training
	Transfer Pre-training
	Decoder Freezing.


