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1. Related Works

1.1. Image Super-Resolution
Image super-resolution (SR) stands as a pivotal technol-

ogy in computer vision [16, 27] and image processing.

Since the groundbreaking work of SRCNN [4], a multi-

tude of convolutional neural network (CNN) based methods

have emerged, including the integration of residual blocks

[9, 26], dense blocks [17, 21, 28], and other architectural

elements [2, 8, 12]. Some strategies incorporate attention

mechanisms, encompassing channel attention [1], non-local

attention [15], and adaptive path aggregation. Recently, a

series of transformer-based networks [5, 6, 13] have been

proposed and have made significant progress in SR. In con-

trast to the above methods, we propose ADD to boost the

performance of existing SR approaches without increasing

the inference time or changing architectures.

1.2. Data Augmentation in High-level Vision
Traditional vanilla DA strategies in high-level vision tasks

include geometric transformations, color transformations,

intensity transformation (e.g., Cutout [3], Random Erasing

[29]), Mixed-based strategies (e.g., Mixup [25], CutMix

[24]), etc. However, these vanilla methods are hardly fo-

cused on important regions and generate labels that match

semantics. A series of saliency-based methods have been

proposed and have become a hot research topic in high-

level vision tasks. SaliencyMix [19] cuts the maximum

saliency region and pastes it to the corresponding region in

another image. AttentiveMix [20] further divides the im-

age into blocks and selects the k blocks with the highest

saliency to paste onto another image. Puzzlemix[10] and

Co-Mixup [11] propose combinatorial optimization strate-

gies to find optimal mixup masks by maximizing saliency

information. Auto-Mix [14] simplifies the calculation of

saliency information and adaptively generates mixed sam-

ples. The saliency-based DA methods have gained much

popularity in the high-level computer vision community,

surpassing vanilla methods and alleviating the information

loss problem, which motivates us to propose saliency-based
DA methods in low-level vision tasks.

1.3. Data Augmentation in Low-level Vision
Currently, the DA strategies in low-level visual tasks are

still limited to vanilla methods. An early pioneering work

[18] proposed seven methods, including geometric trans-

formation DA approaches (i.e., rotation and flipping), to

improve the performance of SR. [7] introduces Mixup and

demonstrates its ability to alleviate overfitting problems in

SR models. [23] makes a comprehensive analysis of exist-

ing DA strategies applied to the single image SR task and

proposes Cutblur. CutMIB [22] further transferred Cutblur

to the light-field super-resolution and effectively improved

network performance. However, these vanilla methods have

information loss issues similar to high-level vision tasks,

making it easy to lose important areas during the augmenta-

tion process. In this paper, we introduce saliency into DA in

low-level tasks by designing a new attribution analysis ap-

proach and further proposing new saliency-based DA meth-

ods ADD and ADD+.
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Figure 1. Differences in saliency map of high-level and low-level

vision tasks.

2. Differences and challenges in High-level and
Low-level Vision Tasks

The disparity between saliency methods for high-level and

low-level vision tasks is substantial. As shown in Figure

1, salient regions in high-level tasks are associated with se-

mantic concepts such as ”cats” and ”dogs,” whereas low-

level tasks emphasize edge textures and other fundamental

features. Directly transferring saliency-based DA methods

from high-level to low-level vision tasks poses several crit-

ical challenges.

Task objective mismatch. High-level vision tasks prior-

itize semantic information, while low-level tasks focus on

pixel-level details. For instance, in object detection and

image classification, saliency methods highlight significant

semantic regions to identify objects and scenes using high-

level features. Conversely, low-level tasks like image de-

noising and super-resolution require the processing of local

details and textures through precise pixel-level operations.

Employing high-level saliency methods in low-level tasks

can overlook essential image details and textures, hindering

the achievement of desired detail restoration.

Feature requirement inconsistency. High-level vision
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Figure 2. The critical bottleneck of DA methods in low-level vision tasks is information loss problems. Directly transferring the saliency-

based DA methods from high-level tasks is challenging, and we propose ADD to tackle it.

tasks depend on deep semantic features, whereas low-level

tasks rely on shallow detail features. Saliency methods in

high-level tasks typically extract deep features to identify

key regions, but low-level tasks need to retain and restore

image details using shallow features. Directly transferring

these methods results in a mismatch in feature extraction

layers, which fails to capture the detailed information re-

quired for low-level tasks, thereby compromising image

quality.

Data characteristics difference. Data in high-level vision

tasks are rich in semantic information, whereas data in low-

level tasks focus on detail and noise processing. High-level

tasks often include clear semantic annotations, enabling

saliency methods to effectively highlight target regions. In

contrast, low-level tasks primarily deal with local features

and noise. Using saliency methods from high-level tasks

can lead to over-smoothing of details or inadequate noise

handling, as these methods are not optimized for the char-

acteristics of low-level vision data.

Method design inappropriateness. High-level vision

tasks require methods optimized for semantic information,

while low-level tasks need methods optimized for details.

Saliency methods for high-level tasks often involve com-

plex context modeling and global feature extraction, which

are effective for handling global image information. How-

ever, low-level tasks require high-resolution feature maps

and fine convolution operations. From a model design per-

spective, saliency methods tailored for high-level tasks are

inherently unsuitable for low-level tasks, as their reliance

on global context modeling and coarse feature extraction

fails to preserve the fine-grained details critical to low-level

vision applications.

3. Information Loss in High-level and Low-
level Vision Tasks

High-level vision tasks. Data augmentation (DA), espe-

cially cropping, often results in the loss of critical semantic

information or essential image regions, which can under-

mine the representativeness of training samples. This issue

is particularly pronounced in high-level vision tasks such as

image classification, object detection, and image segmenta-

tion. For instance, in image classification, cropping an im-

age may exclude crucial object parts, leading to incomplete

semantic information. If the head of a cat is cropped out, the

remaining image content may fail to convey the semantic

category cat, increasing the likelihood of misclassification.

To address this, researchers have developed saliency-based
DA strategies leveraging class activation maps and attention

mechanisms to emphasize salient regions, thereby minimiz-

ing information loss during training.

Low-level vision tasks. In low-level vision tasks, the is-

sue of information loss pertains to the degradation of fine-

grained details during DA, as outlined in the main paper



Algorithm 1 CAM

Input: ILR ∈ RH×W×C : Low-resolution imgaes

Input: F : Pretrained SR model

Output: ILR
s ∈ RH×W×C : Saliency maps of input images

1: γpb(a) ← ω(σ − ασ) ⊗ ILR : Generate blurred LR

images s.t.a = 0.05, 0.1, 0.15, ..., 0.95

2: ISR
pb ← F(γpb(ai)) : Input blurred images to obtain

reconstructed images

3: Gsum ← GD(ISR
pb ) : Convert to gradient scalar

� Eq. (2)

4: Gpd(i) ← ∂Gsum

∂γpb((ai)
dα : Obtain gradient through back-

propagation

� Eq. (3)

5: γpb(i) ← γpb(ai)−γpb(ai+1) : Calculate the difference

between adjacent blurred images � Eq. (4)

6: Initial: LOA = ‖γpb(0) − ILR‖1: The overall loss

function

7: for i = 1 to k do
8: φCAM

i ← (γpb(i) − γpb(i + 1)) × Gpd(i) : Obtain

the initial gradient of the step i � Eq. (4)

9: � Obtain threshold Tf for selecting the lowest abso-

lute gradient value with a fraction of pf � Eq. (5)

10: Mf = 1‖ILR
i ‖≤Tf

: Mask of the selected gradients

� Eq. (5)

11: � Achieve the limited range [αmin, αmax] of the αi in

the step i

12: � Calculate the target loss LTG, current loss LCU ,

mask fraction loss LMF , and calculate the calibra-

tion factor δ:

LTG = LOA × (1− i
k )

LCU = ‖γ( i
k )− ILR‖1

LMF = ‖Mf � (γ(ai)− γ(amax))‖1 � Eq. (6)

δ = LCU−LTG

LMF
� Eq. (6)

13: γc(ai) = γpb(ai + δ × (amax − ai)): Calibrate the

blurred LR

14: ψCAM
i = φCAM

i +(γc(ai)− γ(ai))×φCAM
i : Cal-

ibrate the gradient of the step i

15: end for
16: return ILR

s =
∑k

i=0ψ
CAM
i � Eq. (7)

Sec. (1). This leads to augmented samples that may not ef-

fectively represent the original detailed features. For exam-

ple, in super-resolution tasks, cropping can lead to the loss

of intricate edge details and texture information, which are

essential for accurate reconstruction. Unfortunately, on the

one hand, existing saliency-based approaches in low-level

vision tasks often struggle to identify relevant regions due

to challenges like background noise. On the other hand,

the inherent differences between high-level and low-level

vision tasks (detailed in the supplementary Sec. (2)) render

high-level saliency methods unsuitable for direct applica-

tion to low-level tasks. We extend gradient-based attribu-

tion techniques and introduce two novel features, propos-

ing a tailored attribution-driven DA method for low-level

vision tasks, as shown in Fig. 2. This approach overcomes

the limitations of existing methods, addressing the critical

bottleneck of information loss and significantly advancing

DA strategies in low-level vision applications.

4. Pseudocode for proposed CAM

Algorithm (1) contains a detailed pseudocode of the pro-

posed CAM (main paper Sec. (3.3)). The saliency map ILR
s

obtained from pseudocode will be input into the proposed

saliency-based DA methods ADD and the enhanced version

ADD+ (main paper Sec. (3.4)).
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