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Supplementary Material

This supplementary material provides more methodological

and experimental details that were streamlined in the main

text due to space limitations, which we hope is of interest to

our readers. It mainly includes:

(A) Detailed experimental setup;

(B) Methodological details;

(C) Further explanations to metrics used in the main text;

(D) Additional experimental studies;

(E) Visualizations;

(F) Miscellaneous.

A. Detailed Experimental Setup

A.1. Implementation Details

We use publicly released FR model F from ElasticFace [2],

unconditional DM Gid from DCFace [9], and encoder and

decoder ϕe, ϕd from the VAE of LDM [16]. For the style en-

coder E , we employ a simple network as depicted in Fig. 11.

We train our generator G for 250K steps, using an Adam op-

timizer [10], an initial learning rate of 1e-4, and a total batch

size of 512. To incorporate context blending, during train-

ing, we replace cid and csty with learnable empty contexts

c∅id and c∅sty with a probability of 0.1; during inference time,

we employ CFG by choosing t0=500 and w=0.5. To eval-

uate our 0.5/1.2M synthetic datasets, we train an IR-50 [5]

FR model Fsyn for 40 epochs using an SGD optimizer [18],

an ArcFace [4] loss, a total batch size of 256, and an initial

learning rate of 0.1. We employ random horizontal flipping

as following the de facto standard in FR, and random crop-

ping with a probability of 0.2 as recommended by [8]. We

do not use other forms of data augmentation. We run all

experiments on 8 NVIDIA RTX 3090 GPUs and use fixed

random seed across all experiments.

A.2. Datasets

We train our LDM G on CASIA-WebFace [21], a dataset

that consists of 490k face images of varied qualities from

10575 identities. We benchmark FR model Fsyn trained

on our synthetic images on 5 widely used test datasets,

LFW [12], CFP-FP [20], AgeDB [14], CPLFW [22], and

CALFW [23]. CFP-FP and CPLFW are designed to mea-

sure the FR in cross-pose variations, and AgeDB and

CALFW are for cross-age variations.

A.3. Critical Feature Shapes

G,Gid produces 3×128×128 images. Each of the 3DMM

feature maps (surface normals, albedo, Lambertian render-

ing) is 3×128×128, and their concatenation by channel is

9×128×128. The latent representation of G is 3×32×32.

For the training of FR model Fsyn, we resize the synthetic

images into 3×112×112 to match Fsyn’s input shape. The

lengths of cid and csty are 512.

B. Methodological Details

B.1. Style Extraction

Our proposed approach uses an off-the-shelf DECA 3DMM

M to extract style attributes p and render them into feature

maps m. We briefly digest these attributes and feature maps

from the DECA paper [6] to help explain their details.

Style attribute extraction. Given input face image x ∈
R

3×128×128, DECA uses a trained encoder to infer 6 at-

tribute groups that entirely describe the face’s style: (1)

Shape ps ∈ R
100, representing facial geometry features de-

composed via principal component analysis (PCA). Each

dimension controls a specific geometric aspect, e.g., the

width of facial contours; (2) Expression pe ∈ R
50, de-

scribing facial expression features extracted through PCA;

(3&4) Pose and Camera pp ∈ R
9. Pose is represented

in 3D coordinates, while the camera models the projection

from the 3D facial mesh to 2D space. Since the image’s

pose is jointly determined by both 3D pose and camera in-

formation, we collectively refer to them as “pose” for sim-

plicity; (5) Texture pt ∈ R
50, modeling facial textures such

as wrinkles, derived via PCA; (6) Illumination pi ∈ R
27,

describing lighting conditions on the facial 3D mesh using

spherical harmonics. For simplicity, we represent these at-

tributes together as a unified style vector p ∈ R
236 in our

main text.

Feature map rending. DECA renders 3 feature maps based

on the extracted style attributes. First, it generates a 3D

facial mesh using FLAME [13], combining shape, expres-

sion, and pose attributes. The 3D mesh contains 5023 ver-

tices. It then renders the mesh into the following feature

maps: (1) Surface Normals ms ∈ R
3×128×128, repre-

senting facial geometry as the normal vectors of each ver-

tex in the mesh; (2) Albedo ma ∈ R
3×128×128, captur-

ing facial texture without lighting effects, derived by com-

bining the mesh with texture attributes; (3) Lambertian

Rendering ml ∈ R
3×128×128, a coarse rendering that in-

corporates both texture and illumination attributes. These

three feature maps provide a detailed description of facial

styles and are concatenated along the channel dimension

into m ∈ R
9×128×128. This consolidated representation



Figure 11. A detailed look at MorphFace generator G and style encoder E . The main body of the generator is a U-Net [17] noise estimator.

The identity and style contexts cid, csty are incorporated into the model via cross-attention layers after the U-Net’s ResNet blocks. By

cross-attention, we follow the same practice described in Sec. 3.3 of the LDM fundamental paper [16]. The style encoder E is a rather

simple module consisting of 2 convolution layers plus a linear layer.

Figure 12. Distribution of style attributes. (a) We find Gaussian

distributions in randomly chosen attribute dimensions from P. (b)

Sample correlation matrix of P’s shape dimensions.

effectively supports style control.

Correction. We correct a minor mistake in our pipeline

figure (Fig. 2): The “3D mesh” should appear after “style

attributes”, as part of DECA’s rendering process.

B.2. Architecture of LDM Generator

Figure 11 provides a detailed look at MorphFace generator

G and style encoder E . The generator’s main body is a U-

Net [17] noise estimator. The identity and style contexts

cid, csty are incorporated into the model via cross-attention

layers after the U-Net’s ResNet blocks. By cross-attention,

we follow the same practice described in Sec. 3.3 of the

LDM paper [16]. The style encoder E is a simple module

including 2 convolution layers plus a linear layer.

B.3. Distribution of Style Attributes

In Sec. 3.3, we approximate the distribution of real-world

style attributes by a multiplicative Gaussian distribution,

i.e., D(P)∼N (µ,Σ). We here explain its rationale: (1)

Each attribute dimension of shape, expression and texture

follows a Gaussian distribution as a natural outcome of

DECA [6]. In DECA, these attributes are derived from

PCA, and Gaussian distribution is part of PCA’s assump-

tion. (2) Previous findings [1, 15] suggest that facial at-

tributes including pose and illumination can be modeled via

Gaussian distributions. As each attribute dimension can be

considered as an approximation of Gaussian distribution,

their multiplication holds D(P)∼N (µ,Σ).

We also empirically validate the assumption. We find

Gaussian distributions in randomly chosen attribute dimen-

sions from P, as shown in Fig. 12(a). Here, we can also in-

fer each dimension’s mean µi and variance ϵi. In Fig. 12(b),

we visualize the correlation matrix of P’s shape dimen-

sions. Knowing each dimension’s mean and variance, and

the correlation matrix allows concretizing N (µ,Σ).

B.4. ClassifierFree Guidance

In Sec. 3.4, we employ CFG [7] for context blending. CFG

is a common technique in generative models, particularly

DMs, to strengthen the generated samples’ adherence to

conditioning contexts without an explicit classifier.

In the training phase, CFG requires the model to be

trained to predict the noise added to data for two scenar-

ios, (1) conditional, when conditioning context (i.e., cid and

csty in our case) is provided, and (2) unconditional, when

the context is null or a placeholder. We achieve uncondi-

tional training by probabilistically replacing cid and csty
with learnable empty contexts c∅id and c∅sty , i.e., the place-

holders. In the inference phase, the predicted noise ϵcfg
is computed as a weighted combination of conditional and

unconditional predictions as

ϵcfg = (1 + w)ϵθ(zt, t, c)− wϵθ(zt, t, c
∅), (10)



Figure 13. Variances of DECA-extracted style attributes. The

same result is streamlined in Fig. 1. Larger intra-class and

dataset-wise variance represent better intra-class style variation

and dataset variability. It can be inferred that IDiff-Face is inade-

quate in style variation and MorphFace has diverse varied styles.

where w>0 strengthens the condition. We concretize

ϵθ(zt, t, c
∅) as ϵθ(zt, t, cid, c

∅
sty) and ϵθ(zt, t, c

∅
id, csty) to

incorporate dual conditions, to augment style and identity,

respectively.

C. Metrics Explained

We explain the details of 4 metrics we used in the main text.

C.1. Cosine Similarity

It is the fundamental metric in SOTA FR systems to measure

the similarity between two identity embeddings represent-

ing face images. Formally, let x1, x2 denote two face im-

ages, F denote a pre-trained FR model, and d1, d2 denote

the identity embeddings extracted as d = F(x). d1, d2 are

512-dim feature vectors in our case. The cosine similarity

between d1, d2 is

cossim(d1, d2) =
d1 · d2

|d1||d2|
. (11)

A larger cossim(d1, d2) indicates that x1, x2 are more likely

the same person. To train an effective FR model, we expect

the training face images to have high intra-class cosine simi-

larity (i.e., identity consistency within each subject) and low

inter-class cosine similarity (i.e., unique subjects). In our

main text: (1) In Fig. 1, we depict curves of intra-class and

inter-class cosine similarities, hence more separated curves

indicate better FR efficacy. (2) In Fig. 7 and Tab. 2, we re-

port the average intra-class cosine similarity. (3) In Sec. 3.3,

we only enroll reference images with cosine similarity be-

low 0.3 to filter those less distinct subjects.

C.2. DECA Attribute Variance

In Sec. 3.2, we use a pre-trained DECA 3DMM to infer

the style attributes from an input image, p=M(x). The

style attributes can be considered a 236-dim vector, where

its 100, 50, 9, 50, and 27 dimensions represent the image x’s

facial shape, expression, pose, texture, and illumination, re-

spectively. As the image’s style is solely parameterized by

Figure 14. The calculation of frequency variances. Images are

converted into frequency spectrum via FFT and partitioned into

different frequency components, where their variances are mea-

sured. Higher variances reflect more informative frequency com-

ponents.

style attributes, the intra-class and dataset-wise variances

of these attributes demonstrate the dataset’s intra-class style

variation and dataset variability. In our main text: In Fig. 1,

we depict the average style variance of facial shape, expres-

sion, pose, texture, and illumination, hence larger shaded

areas represent better intra-class style variation and dataset

variability. We supplement the detailed attribute-wise vari-

ance in Fig. 13. It can be inferred that IDiff-Face is inade-

quate in style variation and MorphFace has diverse styles.

C.3. Extended Improved Recall (eIR)

It is proposed by DCFace [9] as an extension of Improved

Recall [11] to measure the style diversity of synthetic im-

ages. The images x are first mapped into a style latent space

via an Inception Network [19] trained on ImageNet [3] to

obtain inception vectors v. To calculate eIR, for a set of real

(i.e., CASIA) and synthetic inception vectors {vc
i}, {v̂c

j}
under the same label condition c, define the k-nearest fea-

ture distance rk as rk=d(v̂c
j −NNk(v̂

c
j , {v̂c

j}) where NNk

returns the k-nearest vectors in {v̂c
j} and

I(vc
i , {v̂c

j}) =
{

1, ∃v̂c
j ∈ {v̂c

j} s.t. d(vc
i , v̂

c
j) < rk,

0, otherwise,

(12)

d(·) is l2 distance. The eIR is defined as

eIR =
1

C

1
∑

c Nc

C
∑

c=1

Nc
∑

i=1

(

I(vc
i , {v̂c

j})
)

, (13)

which is the fraction of real image styles manifold cov-

ered by the synthetic image style manifold as defined by

k-nearest neighbor ball. If the style variation is small, then

rk becomes small, reducing the chance of d(vc
i , v̂

c
j) < rk.

In our main text: (1) In Fig. 7, we measure intra-class style

variation by intra-class eIR and dataset variability by dataset

eIR. (2) In Tab. 3, we report intra-class eIR for each setting.

C.4. Frequency Variances

It measures the diversity across different frequency com-

ponents. Figure 14 explains its calculation, where images



Figure 15. Comparison of synthetic images with and without re-

placing their shape attributes with ground-truth shape during style

sampling. Shape replacement offers synthetic images with im-

proved visual similarity to the reference image.
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Figure 16. Alternative methods for style conditioning. Directly

using style attributes as context fails to control style due to lacking

pixel-aligned details. Concatenating style feature maps to image

channels produces artifacts when incorporating blending.

are converted into frequency spectrum via FFT and parti-

tioned into different frequency components, and the vari-

ance of each component is measured. Higher variances

reflect (though not in a decisive manner) more informa-

tive frequency components, hence better identity consis-

tency and style variation. In our main text, it is exhibited

in Fig. 9(a).

D. Additional Experimental Studies

D.1. Shape Attribute Replacement

As discussed in Sec. 3.3, we sample style attributes (i.e., fa-

cial shape, expression, pose, texture and illumination) from

a real-world prior distribution. Then, we replace the intra-

class mean of facial shape attributes with the reference im-

age’s ground-truth shape. In Fig. 15, we compare synthetic

images with and without replacing their shape attributes

during style sampling. Shape replacement offers synthetic

images with better visual similarity to the reference image.

Experimentally, this improves average FR accuracy by 0.22.

D.2. Alternation for Style Conditioning

We proposed to condition style from 3DMM renderings us-

ing cross-attention. We study 2 alternatives: (1) Directly

using style attributes p as csty , and (2) Concatenating style

feature maps m to the image channels. From Fig. 16, we

observe that the first approach provides ineffective style

control due to a lack of pixel-aligned details. Though the

second approach controls style, we find it incompatible with

context blending (as CFG ineffectively learns empty feature

Figure 17. Comparison with SOTAs on frequency variances. Our

proposed method, DCFace and SFace exhibit informative fre-

quency components similar to CASIA. The analyses match the

quantitative eIR results in Fig. 7(a).

Strategy eIR cos-sim FR Avg.

W/o blending 0.608 0.37 93.11

t0

750 0.617 0.48 93.23

250 0.675 0.38 93.18

500 (Proposed) 0.642 0.45 93.32

w

1 0.684 0.51 93.05

0.25 0.613 0.37 93.14

0.5 (Proposed) 0.642 0.45 93.32

Table 4. Choices of shifting timesteps t0 and CFG weight w.

maps) and may introduce artifacts.

D.3. Comparison on Frequency Variance

In Fig. 17, we measure the intra-class variances of fre-

quency components for the real-world CASIA dataset, sev-

eral SOTAs, and our proposed MorphFace. This is an exten-

sion of Fig. 9(a) of our main text. We highlight: (1) Mor-

phFace, DCFace and SFace exhibit informative frequency

components similar to CASIA, while DigiFace and SFace

exhibit less informative components. (2) The frequency

analyses match the quantitative eIR results in Fig. 7(a),

where MorphFace, DCFace and SFace have higher intra-

class eIR. This also demonstrates the reasonableness of fre-

quency analyses.

D.4. Choice of Blending Parameters

We study the impact of choosing different shifting timesteps

t0 and CFG weight w during context blending on synthe-

sizing quality and FR efficacy. Results are summarized by

eIR, cosine similarity and average FR accuracy in Tab. 4.

We highlight: (1) Choosing larger/smaller t0 strengthens

the impact of identity/style contexts, leading to increased

cosine similarity/eIR, respectively. They both suffer a slight

accuracy drop, suggesting the importance of balancing be-



Figure 18. Sample images from different CFG weight w. A too-

intensive weight (e.g., 5) could produce less realistic images that

downgrade FR efficacy.

Figure 19. Sample DECA feature maps and their synthetic images.

tween contexts. The drop however is slight and both set-

tings outperform the non-blending baseline, demonstrating

the effectiveness of our proposed technique. (2) By choos-

ing a smaller w=0.25, context blending is too inconspicuous

to affect performance. (3) Choosing a larger w=1 increases

both eIR and cosine similarity. Interestingly, this negatively

impacts FR efficacy. In Fig. 18, we find an intensive w (e.g.,

a very large 5) could generate less realistic images, which

explains the accuracy downgrade. This suggests that a mod-

erate w should be chosen for context blending. We leave its

improvement in future studies.

E. Visualizations

In Fig. 19, we provide sample DECA feature maps m and

their synthetic images. As discussed in Secs. 3.2 and 3.3,

the feature maps are rendered from style attributes p′,

whose expression, pose, texture and illumination are ran-

domly sampled from a real-world prior distribution and

shape comes from the reference image. Figure 19 is an ex-

tension of Fig. 3 in our main text.

In Fig. 20, we provide additional sample images from

MorphFace, where intra-class style variation and subject

distinctiveness can both be observed. The 0.5/1.2M syn-

thetic datasets will be later released for public access.

F. Miscellaneous

Code and dataset. The code and synthetic datasets will

be available at https://github.com/Tencent/

TFace/.

Figure 20. Additional sample images from MorphFace.
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